Mapping uncertainty

Mapping uncertainty

Mapping Uncertainty

Can gene regulatory networks help scientists predict cell behavior and improve therapeutics for cancer and other diseases?

By Bernard Cook III

It’s one of the big mysteries of biology. Why do genetically identical cells often differ in the way they move, which proteins they produce and how they respond to their surroundings? Casim Sarkar, a professor in Biomedical Engineering and a member of the BioTechnology Institute, is working to solve this enigma by studying gene regulatory networks — the interaction between genes and the proteins they produce.  

Sarkar likens these gene regulatory networks to computer code that governs which genes are turned on, what proteins they produce and in what quantity. As it turns out, a cell’s behavior (for example, how it moves) and the decisions it makes (whether to move) are largely determined by gene regulatory networks and how they interact with the cell’s environment. 

To begin unraveling the link between gene regulatory networks and cell behavior, Sarkar’s lab borrowed the concept of the “epigenetic landscape” from developmental biologists. Initially, the epigenetic landscape was developed as a visual metaphor to demonstrate how a stem cell (a cell that has not yet developed a specific function) becomes one of many cells with a defined function, like a neuron or a muscle cell. According to Sarkar, “The landscape looks like a ski slope where you can take different paths all starting from the same point.” 

Like a ski slope, the epigenetic landscape has defined features like height, steepness and surrounding hills and valleys, which collectively inform what a cell — in this case, the skier — will do next. Picture placing a marble on a Pringle: in some directions, it may move downward and in others it can only go up. Let go, and the marble will most likely move downward. Like this, a cell on or near a crest is likely to move downhill and perform actions that are more likely, while a cell in a valley is met with resistance and likely won’t change its behavior at all (unless, like a skier, it has accumulated sufficient prior momentum to move upwards).

Instead of simply using the landscape to conceptualize cell behavior, Sarkar’s lab is developing a computer-based epigenetic landscape to predict what a cell in a given state might do next — and the likelihood of that outcome. This approach is particularly useful because it allows him to incorporate elements like cell-to-cell variability and DNA modifications, two features of gene regulatory networks that may push two otherwise identical cells to do different things in the same circumstances. In his model, these elements play a role in determining the shape of the landscape, which allows Sarkar and his team to make predictions about cellular behavior by accounting for these confounding elements. Importantly, this approach also allows him to pinpoint facets of the gene regulatory network that drive two identical cells to behave differently. 

Understanding why identical cells take different paths may help improve therapies for cancer and other conditions. In cancer, for example, tumors consist primarily of cells that proliferate rapidly. But some cancers also contain dormant cells that evade standard chemotherapy and often cause relapse. Sarkar’s approach could identify aspects of the gene regulatory network that push some cells to choose dormancy, which in turn, may help researchers keep these cells dormant or identify an intervention that awakens dormant cells and renders them vulnerable to standard chemotherapy. 

Sarkar’s long-term goal is to make concrete predictions about what a cell might do in specific environmental conditions as a result of the underlying gene regulatory network. Solving this mystery could help engineers working with stem cells create tissues with the desired structure and function and improve therapeutic strategies to combat antibiotic resistance.

Enzyme advances promise to boost the bioeconomy

Enzyme advances promise to boost the bioeconomy

Enzyme advances promise to boost the bioeconomy

Enzyme technology symposium brings together researchers from North America and Japan working on cutting-edge applications.

By Stephanie Xenos

Around 85 researchers and industry partners involved in developing new enzyme-based applications recently came together at the University of Minnesota for the 1st North America-Japan Enzyme Technology Symposium. The symposium, organized by the BioTechnology Institute and Amano Enzyme Japan, focused on enzyme technology relating to biocatalysis and food, two key areas of the growing bioeconomy. 

“This symposium provided opportunities for new collaborations and learning about new enzyme applications that are particularly relevant for advancing the bioeconomy in Minnesota given the abundant agricultural and forest resources in our state,” says Claudia Schmidt-Dannert, director of the BioTechnology Institute.

Speakers covered a range of topics including modifications in the rate at which plants absorb light, in wood xylan to make polymers for food packaging, and in polyunsaturated fatty acids to make therapeutics.

“Enzyme applications make our lives better and our environment cleaner but most people are unaware of their importance since they work for us out of sight,” says Romas Kazlauskas, a professor in Biochemistry, Molecular Biology and Biophysics, and one of the organizers of the symposium. “Enzymes make our laundry detergents more effective, are used to make the COVID-19 drug Paxlovid, and improve the texture and taste of our foods. This symposium provided examples of current and future applications of enzymes.”

The symposium provided students and postdocs to engage with experts from industry and academia, and learn about the breadth of enzyme applications.

A selection of symposium talks are available to view.

Undercover Operative: Environmental Microbiologist Infiltrates the World of Human Microbiome Research 

Undercover Operative: Environmental Microbiologist Infiltrates the World of Human Microbiome Research 

Undercover Operative: Environmental Microbiologist Infiltrates the World of Human Microbiome Research 

BTI Researcher Christopher Staley uses an ecology framework to tackle the human microbiome and its intricate secrets. 

By Emerson Mehring

Can your poop cure disease? Sounds ridiculous until you hear stories from patients helped by a fecal microbiota transplant (FMT). BTI Researcher Christopher Staley left the banks of the Mississippi River and dove head first into the diverse ecosystem living inside our digestive tract: the microbiome. But how did he get there?

During his undergraduate and graduate studies, Staley met Michael Sadowsky, a distinguished microbiologist and then director of the University of Minnesota BioTechnology Institute. After mingling at several research conferences, Sadowsky offered Staley a job studying water quality at pollution sites along the Mississippi River. Staley’s role was to isolate and analyze DNA sequences from microorganisms living in the water and sediment.

With no expertise in mathematical modeling for biological systems or computational biology, Staley was concerned about his new position, but Sadowsky reassured him he was a good fit. Staley offered a new perspective to the team of bioinformatic scientists that would process the data. He understood the connections to the larger ecosystem.

“I learned how to speak both languages,” recounts Staley. “And we found eight stories hidden in their data which were all eventually published.”

Much like the waters of the Mississippi, the digestive tract harbors countless microbial communities. When Sadowsky introduced Staley to fellow BTI researcher Alexander Khoruts’ work on the microbiome, a natural partnership emerged. 

Khoruts and Sadowsky were instrumental in developing the modern use of microbiota transplant therapeutics (MTT), though the practice dates to fourth-century China when people suffering from severe diarrhea were treated using a soup of dried fecal matter (yes, you read that correctly) to restore the balance of bacteria in the gut. Khoruts and Sadowsky sought a modern approach to help patients suffering from stubborn Clostridium difficile infections that cause severe stomach cramping, diarrhea, and abdominal pain. But faced with the complexity of the microbiome, Khoruts and his team had many unanswered questions.

After analyzing their dataset, Staley recognized that environmental science offered some solutions. “The tools and techniques we used studying the river are the same for fecal samples. They thought their questions were hard, but I saw them through a different lens.” He recalls the collaboration as a success because they respected each other’s expertise, which presented complementary analytical perspectives. 

After dabbling in clinical research, Staley’s curiosity was piqued, so he pursued a position in the Department of Surgery at the University of Minnesota. 

Navigating the transition from environmental to clinical research was challenging. Staley built on his background in ecology to explore links between the microbiome and human disease while working with University of Minnesota physician Armin Rashidi, who studies the effects of leukemia treatment on the microbiome. 

Knowing that antibiotics can wreak havoc on the microbial balance in the body, Rashidi sought to understand the potential impact on his patients. Working together, Rashidi and Staley determined that antibiotics—while effective in treating harmful infections—also destroyed the helpful bacteria that keep our bodies healthy. This paradox proved fundamental to understanding the connection between the microbiome and disease and how microbial communities interact to support and undermine human health.

The microbiome has been linked to obesity, colorectal cancer, and almost every illness researchers could find. And while microbiome research has blossomed over the last decade, Staley estimates about 15 percent of studies pay adequate attention to microbial community function, and even fewer explore a critical component of bacterial communication: quorum sensing. Staley’s new focus is on disrupting the signaling molecules bacteria use to communicate with quorum quenching techniques, in collaboration with BTI investigator Mikael Elias, which prevent synchronized behavior in microbial communities.

“Of course, they’re talking in there,” says Staley. “Did you think the bacteria were just sitting there, ignoring each other? There are trillions of them!”

In preliminary testing in mice, Staley found evidence that quorum sensing could play a significant role in the gut-body connection. When fed a Western diet, quorum-quenching mice were more resistant to diet-induced obesity than mice in the control group. While only a preliminary trial, Staley is enthusiastic about digging into the mechanics of bacterial communication and its impact on the human body. 

Does he miss the Mississippi and his work in environmental science? Staley’s lab is a short walk from the mighty river, and as he points out: “First, I was looking for the effects of pollutants on a body of water, and now I’m analyzing fecal matter for how bacteria impact the body … it’s almost the same!”

Schedule

Schedule


Friday May 5, 2023

(One day symposium)

McNamara Alumni Center
University of Minnesota
Minneapolis, MN USA.

Map & Directions

 Symposium Time Table

 

9:00-9:15

 

Opening Messages

  • Professor Romas Kazlauskas  (UMN)
  • Professor Ismail (PPIC)
  • President Amano (Video message: Amano Enzyme Japan)

9:15-9:45

9:45-10:15

10:15-10:45

10:45-11:15

Presentation 1

Presentation 2

Presentation 3

Presentation 4

11:15-12:00 Panel discussion
12:00-13:30

Lunch
Poster session

13:30-14:00

14:00-14:30

14:30-15:00

Presentation 5

Presentation 6

Presentation 7

15:00-15:20 Coffee Break

15:20-15:50

15:50-16:20

16:20-16:50

Presentation 8

Presentation 9

Presentation 10

16:50-16:55

 

Messages from Dr. Shotaro Yamaguchi (Amano Enzyme Japan)
17:00-18:30 Cocktail hour

 

Presenters

Romas Kazlauskas

Romas Kazlauskas, Ph.D.

Professor, Biochemistry, Molecular Biology & Biophysics
Biotechnology Institute
University of Minnesota
rjk@umn.edu

Romas Kazlauskas studied chemistry at the Massachusetts Institute of Technology (Ph.D.) and Harvard University (postdoc with George Whitesides). He worked at General Electric Company (1985-88) and McGill University, Montreal, Canada (1988-2003) and is currently a professor in Biochemistry, Molecular Biology and Biophysics at the University of Minnesota. He has been a visiting professor in Germany, Sweden and South Korea. He is an expert in protein engineering of enzymes for biocatalysis and the author of a forthcoming textbook on protein engineering (www.betterenzyme.com).

 Research Interests

  • Engineering new catalytic activity in enzymes
  • Rational design of enzyme properties
  • Enzyme applications to support sustainability
Shotaro Yamaguchi

Shotaro Yamaguchi, PhD.

CTO, Managing Director of Innovation
Amano Enzyme Inc.
shotaro_yamaguchi@amano-enzyme.com

Shotaro Yamaguchi joined Amano in 1984 after receiving a master’s degree in food engineering from the Graduate School of Agriculture, Kyoto University. Since then, he has been engaged in industrial enzymology, fungal genetic engineering, microbial fermentation, and food and medical enzyme applications. He received Ph.D. degree from Kyoto University on lipase in 1991 and spent three years at the Institute of Food Research (UK) from 1999 to 2001. He discovered a novel protein-modifying enzyme, protein glutaminase.

He received the following awards: Encouragement Award from Brewing Society of Japan (2003) and Technology Award from Japan Society for Bioscience, Biotechnology, and Agrochemistry (2010). He is an active Editor for Applied Microbiology and Biotechnology, Headquarters Officer/Auditor for Japan Society for Bioscience, Biotechnology, and Agrochemistry, and Representative for The Society for Biotechnology, Japan.

Todd Hester

Todd Hyster, Ph.D.

Associate Professor
Department of Chemistry and Chemical Biology
Cornell University
 

Prof. Todd Hyster is an Associate Professor of Chemistry and Chemical Biology at Cornell University. He received his B.S. in Chemistry from the University of Minnesota. He did his Ph.D. studies with Tomislav Rovis at Colorado State University. As part of his Ph.D., he was a Marie Curie Fellow with Thomas Ward at the University of Basel. He was an NIH Postdoctoral Fellow with Prof. Frances Arnold at Caltech. He started his independent career at Princeton University in 2015. His group has developed new methods in photoenzymatic catalysis.

Research Interests
  • Photoenzymatic Catalysis
  • Enzyme engineering via directed evolution
  • Selective organic synthesis

Photoenzymatic Catalysis – Using Light to Reveal New Enzyme Functions
Todd K. Hyster

Enzymes are exquisite catalysts for chemical synthesis, capable of providing unparalleled levels of chemo-, regio-, diastereo- and enantioselectivity. Unfortunately, biocatalysts are often limited to the reactivity patterns found in nature. In this talk, I will share my groups efforts to use light to expand the reactivity profile of enzymes. In our studies, we have exploited the photoexcited state of common biological cofactors, such as NADH and FMN to facilitate electron transfer to substrates bound within enzyme active sites. In other studies, we found that enzymes will electronically activate bound substrates for electron transfer. In the presence of common photoredox catalysts, this activation can be used to direct radical formation to enzyme active sites. Using these approaches, we can develop biocatalysts to solve long-standing selectivity challenges in chemical synthesis.

    Stefan Lutz

    Stefan Lutz, Ph.D.

    Sr VP Research
    Codexis Inc.
    stefan.lutz@codexis.com

    Stefan received a B.Sc. in chemistry/chemical engineering from the Zurich University of Applied Sciences, an M.Sc. in Biotechnology from the University of Teesside and a Ph.D. in chemistry from the University of Florida. He was a postdoctoral fellow at Pennsylvania State University. He joined Codexis in 2020 as the Senior Vice President of Research to lead the company’s research team advancing the technology platform, as well as the discovery and engineering of novel enzymes. Prior to his arrival in Redwood City, he was a Professor and Chair of the Chemistry Department at Emory University, having joined the university in 2002 and ascending to Chemistry Department Chair in 2014. Stefan is interested in advanced technologies for creating new, innovative, and economically-sustainable enzyme solutions to benefit society, industry, and the planet.

    Research Interests

    • Advanced technologies for enzyme design and engineering
    • Engineered enzyme applications
    • Biocatalysis

    Engineering Enzyme Products
    Stefan Lutz

    Codexis’ CodeEvolver® directed evolution technology has been applied to improve enzymes for specific functions for well over a decade. Advances in high-throughput gene & protein synthesis (build) and biochemical screening (test) in combination with advanced data analytics (learn) and computational design tools have, and continue to, enable the optimization and drive increasing complexity in developing novel biocatalysts for sustainable manufacturing, the life sciences, and the discovery and optimization of biologics.

    Tomoko Matsuda, Ph.D.

    Associate Professor
    Department of Life Science and Technology
    Tokyo Institute of Technology
    tmatsuda@bio.titech.ac.jp

    Tomoko Matsuda received a doctoral degree in science from Kyoto University (2000). Her doctoral thesis is about the biocatalytic asymmetric reduction of ketone for organic synthesis. She has been engaged in research on biocatalysis since then. She was appointed as an assistant professor at Ryukoku University in Japan (1999-2004) and began the study for biocatalysis using pressurized carbon dioxide. She was appointed as an associate professor in 2004 at the Tokyo Institute of Technology in Japan. She published over 130 scientific articles and received the following awards; the Taisho Pharmaceutical Research Planning Award from the Society of Synthetic Organic Chemistry, Japan (2001), the Morita Scientific Research Encouragement Award from the Japanese Association of University Women (2006), the Shiseido Woman Researcher Science Grant from Shiseido (2011), the Takeda International Contribution Award from Takeda Rika Kogyo (2018).

    Research Interests

    • Utilization of pressurized CO2 for biocatalysis
    • Green chemistry using biocatalysis

    Utilization of Carbon Dioxide as Solvent and Substrate for Biocatalysis
    Tomoko Matsuda

    As carbon dioxide (CO2) is an abundant carbon source and is causing global warming, developments in its utilization methods have been awaited. Therefore, pressurized CO2such as supercritical CO2 has been applied as a solvent for organic synthesis to develop efficient reactions replacing ordinary organic solvents derived from fossil fuel. However, the application of pressurized CO2 to biocatalysis has been limited. Therefore, we have been studying on utilization of CO2 as a solvent for lipase-catalyzed transesterification reactions and as a substrate for biocatalytic carboxylation reactions.

    Supercritical and liquid CO2 has been used for lipase-catalyzed transesterifications to replace conventional organic solvents. In this study, CO2-expanded liquids, liquids expanded by dissolving pressurized CO2, were utilized since they can be achieved at a lower pressure than supercritical and liquid CO2. Then, we found that for lipase-catalyzed transesterifications of bulky substrates, such as 1-(1-adamantyl)ethanol, o-substituted 1-phenylethanol analogs, and substituted 1-tetralol analogs, the conversions were higher for the reaction in CO2-expanded liquids than those in the corresponding liquids without CO2 (Figure 1).

    Matsuda Figure 1

    Figure 1 Solvent engineering using CO2 for lipase-catalyzed transesterifications

    On the other hand, a two-layer solvent system consisting of an aqueous buffer and the carbon dioxide layer was utilized for the carboxylation reactions since carboxylation enzymes are not stable in pressurized CO2 without bulk water. Catalyzed by enzymes from a thermophilic microorganism, Thermoplasma acidophilum isocitrate dehydrogenase (TaIDH) and T. acidophilum glucose dehydrogenase (TaGDH), the reductive carboxylation reactions have been successfully conducted using CO2 as a substrate (Figure 2). These enzymes were also co-immobilized to achieve higher stabilities and activities by forming an enzyme-inorganic hybrid nanocrystal.

    Matsuda Figure 2

    Figure 2 Utilization of CO2v as a substrate of biocatalytic carboxylation

    Anne Meyer

    Anne Meyer, Ph.D.

    Anne S. Meyer is Professor of Enzyme Technology, Head of the Protein Chemistry & Enzyme Technology Section at Dept. of Biotechnology and Biomedicine, Technical University of Denmark. The Section comprises 8 professor research groups, in total ~75 persons, incl. ~20 PhD students. She is group leader of Enzyme Technology in the Section.

     
    Research interests:

    • Applied enzyme technology, incl. enzyme enzymatic biorefining of biomass, agro-industrial side streams, starch, pectin, and seaweeds for production of bioactives and functional food compounds.
    • Enzymatic synthesis of human milk oligosaccharides.
    • Enzymatic degradation of plastic, and enzymatic conversion of CO2.
    • Bioinformatics, enzyme characterization, assays, kinetics, and carbohydrate chemistry

    New food processes and ingredients via targeted enzyme catalysis
    Anne S. Meyer, Technical University of Denmark, Denmark

    One of the major challenges confronting the modern food supply chain is providing safe, nutritious, and preferably functionally healthy food to an expanding global population while utilizing resources sensibly and protecting the environment and the climate. Many agro-industrial co-processing streams are rich in complex plant fibers that should not go to waste, as they may be a valuable source of beneficial, ‘prebiotic’ dietary fibers or a feedstock for functional ingredients production. Corn bran, a residue from large scale corn starch processing, is for example rich in highly substituted feruloylated glucurono-arabinoxylan, and even includes diferuloyl cross links, and is considered recalcitrant to enzymatic modification. We recently discovered a bacterial endo-xylanase (GH30 from Dickeya chrysantemi) that attacks complex corn arabinoxylan to enable gentle solubilization of substituted glucurono-arabinoxylan oligomers1. The recent news is that the GH30-solubilized corn arabinoxylan molecules modulate the human gut microbiota during simulated colon fermentation in vitro, paving the way for using corn bran streams as a resource to generate new soluble prebiotics2. Human milk oligosaccharides (HMOs) are unique, beneficial oligosaccharides in human breast milk. Enzymatic synthesis of HMOs is attractive to create new additives for infant formula and other products. Several glycoside hydrolases can catalyze transglycosylation (incl. transfucosylation) for precise enzymatic synthesis of nature-identical HMO products3. To attain high yields, we are using different types of protein engineering approaches to modify the enzyme to catalyze relevant transglycosylations at high yield4. Citrus-pectin residues have turned out to hold fucosylated xyloglucan that can serve as a source of fucose for enzymatic production of fucosylated HMOs via targeted enzymatic transfucosylation5. Seaweeds, i.e. marine macroalgae, have for decades been a source of food hydrocolloids. As the demand for hydrocolloids keep increasing, kelp seaweeds are now cultivated in the Northern hemisphere and new enzymes are being discovered for enzymatic refining options for kelp biorefining beyond extraction of hydrocolloids. One line of our research relates to enzymatic modification of alginate from kelp6, another concerns enzymatic extraction and modification of fucoidan for medical uses7,8,9. Lastly, we have recently introduced  new microbial 4-alpha-glucanotransferases to modify starch functionality10.

     

    1. Munk et al., 2020. ACS Sust Chem Eng 8 (22), 8164-8174.
    2. Lin et al. 2023. J Agric Food Chem 71, 385-3897
    3. Zeuner and Meyer 2020. Carb Res 493, 108029.
    4. Zeuner et al. 2020 J of Fungi 6(4), 295-313
    5. Nielsen et al. 2022. Carb Res. 519, 198627
    6. Pilgaard et al. 2021. J of Fungi 7, 80-95.
    7. Nguyen et al. 2020. Marine Drugs 18(6), 296-313
    8. Trang et al. 2022. Frontiers Plant Sci 13, 823668
    9. Ohmes et al. 2020 Marine Drugs 18, 481-418
    10. Christensen et al. 2023. Intl J Biol Macromol 224, 105-114.

     

    Jun Ogawa, Ph.D.

    Professor
    Division of Applied Life Sciences,
    Graduate School of Agriculture,
    Kyoto University
    ogawa.jun.8a@kyoto-u.ac.jp

    Jun Ogawa studied applied microbiology and completed his doctorate in 1995 at Kyoto University and became an assistant professor at the same university. He was a visiting researcher at French National Institute for Agricultural Research (INRA) (2006-2007) and has appointed as a full professor of the current position in 2009. He has published over 270 papers in applied microbiology such as bioprocess development, microbial metabolism analysis, etc. He was awarded “Agrochemistry Award for the Encouragement of Young Scientists” by Japan Society for Bioscience, Biotechnology, and Agrochemistry (2006), “Oleoscience Award” by the Japan Oil Chemists’ Society (2015 and 2020), “Society Award of Japanese Association for Food Immunology” (2018), “Ching Hou Biotechnology Award” (2020) and “Fellow” (2021) by American Oil Chemists’ Society, and “Chevreul Medal” by the French association for the study of lipids (2021).

    Research Interests

    • Microbial physiology
    • Fermentation technology
    • Enzyme technology
    • Metabolic engineering
    • Microbial consortia studies

     
    From function to genes, enzymes, and communities; creating novel biotechnology tools
    Jun Ogawa

    Information obtained through detail analysis of microbial function leads to finding of unexpected enzymes, metabolisms, and communities useful for bioprocess design. The screening of the novel biotechnological tools required analysis of unrevealed function with difficulties in establishing the methods, however, recent omics technologies make easier to identify the novel genes, enzymes, and communities, expanding their bioprocess application. Here, examples of bioprocess development by applying unique tools found through functional analysis of microbial metabolisms are introduced.

    1)  Novel amino acid metabolism involving hydroxylase- and dehydrogenase- catalyzing reactions was found. The hydroxylase library expanded through genomic information analysis and coupled with related enzymes made possible the production of various chiral hydroxy amino acids and chiral amino acid sulfoxides1,2.

    2)  Novel fatty acid reducing metabolism, polyunsaturated fatty acid (PUFA) saturation metabolism, was found in gut microorganisms. The metabolism involving four enzymes of hydratase, dehydrogenase, isomerase, and reductase was applied to the production of various hydroxy, oxo, and enone fatty acids with unique physiological activity useful for health3. Novel desaturases involved in PUFA biosynthesis4, and cyclooxygenase5 and P450 monooxygenase6 generating PUFA-derivatives were found and applied to the production of physiologically active PUFA derivatives.

    3)  Novel nucleosidases acting on 2’-O-methylribonucleosides were found and their ribosyl transferring activity was applied for the production of 2’-O-methylribonucleosides7. A novel enzyme, allantoinase, in the purine degradation metabolism was found to useful for the production of chiral amides via prochiral cyclic imide hydrolysis8. The reversible reactions involved in nucleoside degradation metabolism were applied to produce deoxyribonucleosides9.

    4)  Phytochemicals in foods and medicines are changed into bioactive molecules by gut microbial metabolism. The analysis of gut microbial metabolism of phytochemicals such as glucosinolates10, ellagic acid11, baicalin12, and astragaloside IV13 resulted in finding of novel enzymes. Besides, novel aglycon-glycosylating enzymes were found in microorganisms and applied to enhance the applicability of phytochemicals14,15.

    5)  Nitrifying bacteria play an important role in generating nitrate for crop cultivations. Organic nitrogen compounds are converted to nitrate through ammonification and nitrification. Understanding the interactions of the nitrifying microbial consortia is important for controlling the mineralization of organic nitrogen compounds. We established a controllable model consortium for ammonification and nitrification under organic conditions using a co-culture of only three strains selected through metagenomic analysis16,17. 

    References

    1. Hibi, M. et al. Appl Microbiol Biotechnol, 97, 2467-2472 (2013))
    2. Hibi, M. et al. Commun Biol, 4:16 (2021).)
    3. Kishino, S. et al. Proc Natl Acad Sci USA, 110, 17808-17813 (2013))
    4. Mo, B. K. H. et al. Biosci Biotechnol Biochem, 85, 1252–1265 (2021))
    5. Mohd Fazli, F. A. et al. Biosci Biotechnol Biochem, 83, 774-780 (2019))
    6. Saika, A. et al. FASEB Bioadv, 2, 59-71 (2020))
    7. Mitsukawa, Y. et al. J Biosci Bioeng, 125, 38-45 (2017))
    8. Nojiri, M. et al. Appl Microbiol Biotechnol, 99, 9961-9969 (2015))
    9. Horinouchi, N. et al. Microbial Cell Factories, 11, 82, (2012))
    10. Watanabe, H. et al. Sci Rep, 11, 23715, (2021))
    11. Watanabe, H. et al. J Biosci Bioeng, 129, 552-557 (2020))
    12. Sakurama, H. et al. Appl Microbiol Biotechnol, 98, 4021-4032 (2014))
    13. Takeuchi, D. M. et al. Biosci Biotechnol Biochem, 86(10) 1467–1475 (2022))
    14. Suzuki, T. et al. Biocatal Agric Biotechnol, 30, 101837 (2020))
    15. Kimoto, S. et al. J Biosci Bioeng, 134, 213-219 (2022))
    16. Saijai, S. et al. Biosci Biotechnol Biochem, 80, 2247-2254 (2016))
    17. Meeboon, J. et al. Sci Rep, 12, 7968 (2022)

    Boswell Wing

    Boswell Wing

    Boswell Wing

    University of Colorado Denver

    Seminar title TBD

    THURSDAY  I  APRIL 20 I  3:30-4:30 PM CDT  I  GORTNER 239 + ZOOM

    Brian Murphy

    Brian Murphy

    Brian Murphy

    University of Illinois Chicago

    Seminar title TBD

    THURSDAY  I  APRIL 27 I  3:30-4:30 PM CDT  I  AMUNDSON 151D + ZOOM

    Terry Papoutsakis

    Terry Papoutsakis

    Terry Papoutsakis

    University of Delaware

    Seminar title TBD

    THURSDAY  I  APRIL 13 I  3:30-4:30 PM CDT  I  GORTNER 239 + ZOOM

     

    Faculty Research Insight Talks #6

    Faculty Research Insight Talks #6

    Claudia Schmidt-Dannert

    Director of the Biotechnology Institute; Biochemistry, Molecular Biology, and Biophyscs
    University of Minnesota

    Building materials using biology

    In biological systems, proteins, nucleic acids and lipids are precisely organized to form higher ordered structures across multiple length scales. Likewise, cells organize themselves into complex structures such as in biofilms. 

    Harnessing the principles and mechanisms underlying the assembly and organization of natural living systems and materials therefore offers tremendous opportunities for the design and scalable fabrication of functional biomaterials with emergent properties, including remodeling, self-repair and healing. 

    Our laboratory is exploring the design of self-assembling systems for a variety of applications. In one area of research, we are designing protein-based materials as platforms for biocatalysis and as funcitonal materials. Another area of research involves building materials with cells, including the design of living materials and most recently, functional biofilms. 

    In this presentation I will present examples of our current and future work in this area.

    Brett Barney

    Bioproduct & Biosystems Engineering
    University of Minnesota

    Enhancing biological nitrogen fixation for sustainable agriculture

    The Haber-Bosch process is a chemical engineering marvel that enabled the green revolution and supports about 50 percent of global food production through production of ammonia fertilizers.

    Biological nitrogen fixation has been around for quite a bit longer, and has the potential to be harnessed to do more.

    Our laboratory has been altering nitrogen-fixing microbes to generate improved biofertilizers. We recently shifted our efforts to replicate our work in endophyte microbes and better understand the mechanisms enabling certain plant growth promoting microbes to grow within the confines of plants. 

    I will present a brief overview of the work going on related to this task.

    THURSDAY  I MARCH 30 I  3:30-4:30 PM CDT  I  GORTNER 239 + ZOOM

    Reception to follow

    Faculty Research Insight Talk #5

    Faculty Research Insight Talk #5

    Christine Salomon

    Center for Drug Design
    University of Minnesota

    Applied natural products discovery and development

    My research program is focused on harnessing the inspiration provided by chemical compounds made in nature. 

    We are interested in the discovery of completely new molecular structures as well as developing applications for previously described compounds (and the microbes that produce them). Some of our recent projects have centered around developing and characterizing the chemistry of biological control microbes for disease treatments.

    Mark Distefano

    College of Science and Engineering
    University of Minnesota

    Protein prenylation, the anchor of life

    Protein prenylation is a post-translational modification that consists of the attachment of 15 or 20 carbon isoprenoids near the C-termini of proteins.

    In a eukaryotic cell, there are several hundred prenylated proteins including most members of the Ras superfamily and heterotrimeric G-proteins; the prenyl group serves to anchor these proteins in the membrane so that they are positioned to interact with cell surface receptors either directly or via adaptor proteins.

    This means that essentially all signaling processes in eukaryotic cells require the participation of prenylated proteins for everything ranging from the regulation of cell division to stem cell differentiation and development. 

    In this short presentation, I will describe our work in developing chemical probes to study this process in order to learn about the biology of prenylation, develop new inhibitors with therapeutic potential and use lipid modification for biotechnology applications.

    THURSDAY  I MARCH 16 I  3:30-4:30 PM CDT  I  AMUNDSON 151D + ZOOM