Jen Kalaidis-Meslow

Jen Kalaidis-Meslow

Jen Kalaidis-Meslow

Administrative Manager

kalai004@umn.edu

Fiscal strategic support for departmental budgets, MN Drive initiatives, administrative reports, and day-to-day operations of the PMB, BTI, and EEB administrative cluster.

Jen Kalaidis-Meslow is the Administrative Manager for the St. Paul Administrative Cluster at the College of Biological Sciences. Her commitment to environmentalism and sustainability brought her to CBS after having spent the last few years living and working in Los Angeles. As a new Twin Cities resident, Jen enjoys exploring the local bike trails, lakes, and restaurants the metro area has to offer. An avid traveler, she enjoys visiting new locations, both near and far, and hopes to one day visit all seven continents.

About BTI

About BTI

About BTI

The BioTechnology Institute (BTI) provides advanced research, training, and industry interaction in biological process technology, a major area of biotechnology research. The Institute is the central University of Minnesota vehicle for coordinated research in the biological, chemical, and engineering aspects of biotechnology and home to the MnDRIVE Environment Initiative 

Innovative Research

BTI faculty conduct research over a broad spectrum of disciplines including microbial physiology, metabolic pathway engineering, genetics and cell biology, functional genomics, animal cell culture, biodegradation of hazardous materials, molecular evolution, biological diversity, green chemistry, natural product synthesis, protein engineering, and the development of biofuels and biopolymers from renewable resources.

Professional Training

Since 1990, the Institute has been the recipient of the prestigious NIH Training Grant in Biotechnology. This grant has provided financial support to graduate students completing degrees in biochemistry, microbiology, chemical engineering, chemistry, genetics, computer science, biomedical engineering, plant sciences, mathematics, health informatics, and electrical engineering. Many of these students have gone on to complete a PhD. 

Reflecting its cross-disciplinary nature, the Institute offers a Master of Science degree in Microbial Engineering. This program is favorably regarded by industry as a source of highly trained individuals familiar with both the biological sciences and engineering.

A Resource for Industry

In addition to the faculty laboratories, the Institute has established the Biotechnology Resource Center (BRC); a process scale pilot plant unique in the state and accessible to industrial and academic scientists for collaborative and contract research. The BioTechnology Institute also coordinates an active industrial outreach program that sponsors short courses and mini-symposia.

Biotechnology Resource Center

The National Microbiome Data Collaborative

The National Microbiome Data Collaborative (NMDC) team is building an integrated data science ecosystem that leverages existing data standards, data resources, and infrastructure in the microbiome research space. The NMDC is launching the NMDC Ambassador program to provide training and support for early career researchers who are motivated to engage with their respective research communities to lower barriers to adoption of metadata standards.

We invite applications from early career leaders who are:

  • Familiar with the challenges of discovering, accessing, and reusing microbiome data

  • Committed to working with the NMDC to make microbiome data findable, accessible, interoperable, and reusable (FAIR)

  • Motivated to engage with researchers in their community

  • Committed to inclusion, diversity, equity, and accountability (IDEA)

Please encourage qualified early career researchers to apply by May 21, 2021. For more details about the program, visit: microbiomedata.org/community/ambassadors or email us at support@microbiomedata.org.

Amy Angel

Amy Angel

Amy Angel

Accountant

angel188@umn.edu

Non-sponsored account set up and balances, procurement cards, department deposits for BTI

Amy has been working at the University for over five years and lives northwest of the Twin Cities. In her spare time, she likes to travel and go camping, hiking, and bicycling. Amy has two chihuahuas and fosters dogs for a local animal rescue.

Is PFAS a Problem in Municipal Compost?

Is PFAS a Problem in Municipal Compost?

MnDRIVE brings industry and regulators together to weigh costs, benefits, solutions

by Mary Hoff 

What should researchers be researching? With many needs and finite resources, that’s an important question for MnDRIVE Environment, a partnership between the University of Minnesota and the State of Minnesota that brings the power of University inquiry and innovation to bear on challenges industries face related to clean air, water, and land.

In early 2020, the initiative invited private sector and state agency representatives to discuss issues in need of attention related to per- and polyfluoroalkyl substances or PFAS. This class of chemicals historically has been used in a wide spectrum of consumer goods and has since been implicated as a land and water contaminant linked to a range of health risks. Of particular concern is the fact that PFAS chemicals have started cropping up at municipal compost facilities that turn materials such as grass clippings and food waste into a nutrient-filled substance that is used to enrich soil.  

One of the businesses represented at the meeting was the Shakopee Mdewakanton Sioux Community (SMSC) Organics Recycling Facility. The facility takes in 70,000 tons of materials every year to make compost, compost blends, and landscaping mulch. It has tested its products and found PFAS levels to be well below those that the Minnesota Pollution Control Agency (MPCA) considers a health concern in residential soils. PFAS has shown up in water that drains off piles of materials that are in the process of breaking down, says MPCA composting and recycling specialist Kayla Walsh (as it has for other composting facilities around the state). The test results have facility managers looking for ways to continue to do good while preventing future problems.

The topic is a particularly hot one for SMSC because it would like to open a larger facility to meet increasing demand from community composting.

“We know composting is good. We’re amending the soil,” says SMSC biomass processing assistant manager Dustin Montey. At the same time, he adds, “we don’t want to be introducing a harmful substance back into society” by producing soil amendments containing PFAS.

Erin Skelly, environmental and compliance technician for the facility, notes that SMSC is grounded in the Native American principle of caring for the Earth with the next seven generations in mind. A participant in the 2020 MnDRIVE-hosted meeting, Skelly sees a need for research to find the source of the PFAS and how to get it out of the waste stream so it doesn’t end up in compost.

“There’s a lot that’s unknown about PFAS,” she says. “If it’s in compost and in soil, does it leach out? Does it get into groundwater? Do plants absorb that? There’s a lot of opportunity for research.”

MnDRIVE Environment funding is earmarked specifically for remediation. However, it also works upstream to stimulate discussion and connect stakeholders to collaborate on identifying and characterizing problems that remediation can help solve.

“Once we know where PFAS is and where it is coming from, then these issues can be put forward to remediate. That’s sort of the sweet spot where MnDRIVE funding programs come into play,” says MnDRIVE Environment industry and government liaison Jeff Standish.

For example, University of Minnesota environmental health researcher Matt Simcik and environmental engineering researcher William Arnold have been developing technology to keep PFAS from moving from landfills into groundwater. MnDRIVE Environment funding is supporting this work which, upon completion, might be used to protect water at compost sites.

MnDRIVE Environment will be continuing conversations this spring around strategies for addressing PFAS contamination in the environment. Between entities like SMSC that are seeking to protect the planet, and MnDRIVE, which stands ready to bring the power of University research to the task, the hope is that society can continue to reap the benefits of composting without exacerbating the PFAS problem, and perhaps proactively solving it.

Fighting Farmland Pollution with Fungi

Fighting Farmland Pollution with Fungi

With support from the MnDRIVE Environment Initiative, doctoral candidate Laura Bender harnesses the power of soil fungi to help plants absorb pollutants.

by Kyle Wong

To ensure a healthy crop, Minnesota farmers carefully track soil health, nutrients and the quantity of water flowing through their fields. Since 2015, Minnesota’s Buffer Law also requires farmers to tend to historically overlooked land along the edge of these fields. The law mandates a 50-foot buffer along farm fields bordering public waterways, including irrigation and drainage ditches, to help reduce contamination from farm runoff. Instead of corn, soybean and other cash crops, buffer zones are full of perennial plants and trees adept at absorbing excess nutrients flowing from the fields. With financial assistance through environmental programs like the federal Conservation Reserve Program, farmers have both the mandate and the incentives to establish quality buffers. 

Like their commercial counterparts, plants in buffer zones naturally take up nutrients, but researchers like graduate student Laura Bender, hope to improve the process by focusing on fungi living beneath the soil. Soil fungi colonize the roots of buffer plants to form a symbiotic, or mutually beneficial, relationship. “These relationships help plants take up pollutants that would otherwise escape to the waterways, but soils are often degraded through decades of tillage and fertilizer application and compaction,” Bender notes. “The fungi communities that are naturally present in soil are often degraded or absent.” Supported by a 2018 MnDrive Environment seed grant, Bender works to restore those fungal communities to strengthen buffer plants and keep Minnesota waters clean. 

Bender works with several companies working with fungal amendments and measuring techniques. MycoBloom, for example, developed a fungal amendment containing a type of fungus called  arbuscular mycorrhizal (AM). AM fungi have been shown to help plants absorb nutrients more efficiently. But soil types vary across Minnesota, so Bender has worked with farmer Dave Legvold to test the amendment on the buffer zones on his farm. She collects data from his testing site each year to identify how well the amendment might work in the rest of Minnesota.

Bender collects soil and plant samples from the field site’s buffer zone and measures the level of phosphorus, one of the most common farm nutrients harmful to waterways. Alongside the buffer, she also collects dissolved groundwater. The Research Analytics Lab at the University of Minnesota processes the soil, plant and groundwater samples to calculate the phosphorus levels in each component. Bender uses the data to trace the amount of phosphorus that the buffer plants absorb and the amount that escapes to the water. “We’re measuring how the phosphorus level changes each year to see if the fungi amendment is removing it from runoff water that enters the buffer,” she says.

Phosphorus levels in the buffer are only part of the story; Bender wants to observe the interactions between the AM fungi and the buffer plants. To do so, she needs to look below the soil and analyze the mycorrhizal interactions at a microscopic level. Here, she partners with the company MycoRoots to assess how well the AM fungi colonize the roots of buffer plants. MycoRoots documents the surface area of plant roots covered by AM fungi. Bender uses the data to understand the role that mycorrhizal association plays in phosphorus uptake. Data from 2018 and 2019 revealed that plants with high root coverage from AM fungi tended to take up more phosphorus, leading to lower phosphorus levels in both the soil and groundwater. Bender will conduct more data analysis this fall before forming a conclusion. 

Ultimately, Bender hopes to guide state policy to help farmers understand the best practices for their buffers. To build awareness, Bender plans to lead an online workshop this fall to bring farmers, policymakers and industry partners together for a discussion on buffer-related issues and policies. “It’ll be related to specific topics – different fungi people have used, success or failures in certain settings, opportunities for collaboration, etc. The goal is to identify where others have used amendments and how it has worked for them.” 

With additional funding from MnDRIVE Environment and the University’s Institute on the Environment, Bender hopes to continue research and strengthen her partnerships with the community. Proper guidelines on buffer strips and fungal amendments can help Minnesota landowners establish healthy buffers that benefit them financially and help conserve the environment.

This research was supported by MnDRIVE Advancing Industry, Conserving Our Environment at the University of Minnesota.

Kyle Wong is a writing intern in the University of Minnesota Science Communications Lab, majoring in Microbiology. He can be reached at wong0511@umn.edu

An End in Sight For “Forever Chemicals”

An End in Sight For “Forever Chemicals”

MnDRIVE researchers Mikael Elias and Lawrence Wackett are studying Acidimicrobium in hopes of harnessing the bacteria’s PFAS-degrading power.

By Caroline Frischmon

Waterproof, nonstick and flame retardant. Products like raincoats, frying pans and firefighting foam keep us safe, clean and comfortable. Their durability stems from the presence of carbon-fluorine bonds, which are some of the strongest in organic chemistry. Unexpectedly, these great modern conveniences have also created a widespread environmental problem. Compounds with multiple carbon-fluorine bonds, called PFAS (perfluoroalkyl substances), have accumulated for decades in the environment with no effective way to break down these “forever chemicals.” 

Exposure to PFAS through drinking water is associated with higher cholesterol, certain cancers and suppressed immune responses. Scientists and regulators have tried to address the PFAS contamination through filtering, coagulating, burning and more, but most cost-effective solutions simply concentrate the chemicals and move them away from wells, aquifers and other points of human contact. Now, there’s hope that a bacteria called Acidimicrobium sp. might hold the key to a more permanent solution. Through a MnDRIVE Environment Seed Grant, researchers Mikael Elias and Lawrence Wackett, both University of Minnesota professors in the Department of Biochemistry, Molecular Biology, and Biophysics, will study the bacteria’s promising ability to digest PFAS.

Last year, researchers at Princeton University discovered Acidimicrobium could digest PFAS chemicals and convert them to carbon dioxide and fluoride. It’s the first identified bacteria that actually breaks the carbon-fluorine bond, but scientists are wary of calling it a solution quite yet. The microbes eat too slowly on their own to be effective at the scale needed to address PFAS contamination in the environment. To speed up the process, Elias and Wackett will first need to identify the enzymes that give Acidimicrobium its superpower.

All living things use enzymes, or biological catalysts, to accelerate chemical reactions. They are highly specific to one job, whether it’s digesting fats or sugars or assisting in DNA production. Out of all Acidimicrobium’s enzymes, scientists aren’t sure which ones are responsible for the PFAS reaction. “What we’re really going after now is to identify and characterize the actual enzymes responsible for the degradation process,” states Elias. That understanding will pave the way for improving their efficiency through genetic modification. Eventually, the team hopes to develop the enzymes as a PFAS bioremediation tool.

Wackett and Elias partnered on this project to share their varying expertise. Wackett, an enzymologist, will analyze the bacteria’s DNA sequence to identify which enzymes are likely responsible for PFAS degradation. Elias, a structural biologist, will determine how the structure of Wackett’s enzymes facilitates the reaction. 

Using 3D images to reveal the structure of the enzyme’s active site, Elias examines the arrangement of amino acids, the building blocks of enzymes. “We’re going to look at how the amino acids in the enzyme break down the PFAS molecules,” explains Elias. With that information in hand, he and Wackett will try to engineer better enzymes by manipulating the arrangement of the amino acids.

 In addition to engineering a more efficient Acidimicrobium enzyme, Wackett and Elias will search for other potential PFAS-degraders with related DNA sequences. Bacteria with similar enzymes as Acidimicrobium might digest PFAS even more efficiently, but scientists haven’t been able to test for them yet. “When we have the sequence code, we will know how to look for the enzymes and the genes in other bacteria,” says Wackett, “That’s another big advantage of having the structure and knowing those key amino acids.”

Existing PFAS technologies focus on sequestration rather than degradation. “[Containment] is useful until you have a better solution, but it’s imperfect because it has limited capacity,” Elias points out. “You’re just moving pollutants from one place to another.” The MnDRIVE seed grant provides an opportunity for a better solution. Elias and Wackett hope Acidimicrobium will help them finally eliminate these forever chemicals for good.

This research was supported by MnDRIVE Advancing Industry, Conserving Our Environment at the University of Minnesota.

Caroline Frischmon is a Science Communication Fellow in the Science Communications Lab and is majoring in Bioproducts and Biosystems Engineering. She can be reached at frisc109@umn.edu.

 

Understanding a Toxic Necessity

Understanding a Toxic Necessity

Jannell Bazurto, assistant professor of Plant and Microbial Biology at the University of Minnesota, is pursuing a better understanding of formaldehyde, a chemical that is carcinogenic, toxic, and produced by all living things.

By Reed Grumann

If you dissected a pig in high school biology, you might remember a sharp, acrid smell permeating the classroom and the teacher’s warning about a carcinogenic chemical called formaldehyde. Though often labeled a killer chemical, every organism on Earth, including humans, produces small amounts of formaldehyde. In very small quantities, it’s manageable. Produce or consume too much, and formaldehyde will kill otherwise healthy cells by attacking critical proteins and DNA.

While most organisms can neutralize small amounts of formaldehyde, researchers are just beginning to understand the mechanisms involved in formaldehyde regulation. Jannell Bazurto, a member of the BioTechnology Institute and an assistant professor of Plant and Microbial Biology, looks for clues in Methylobacterium, a type of bacteria that produces and neutralizes formaldehyde levels that would kill most other microbes.

As their name implies, methylobacteria have a unique ability to metabolize or breakdown, single-carbon molecules like methane and methanol. The process helps the cell maintain enough energy to survive, but also generates formaldehyde as an intermediate step. Fortunately, the bacteria are also uniquely equipped to handle sudden changes in concentrations of the toxin.

A key mechanism of Methylobacterium is an enzyme that converts formaldehyde into less harmful chemicals. While the enzyme is sufficient at normal levels of formaldehyde concentration, it’s not enough to handle exceptionally higher formaldehyde levels. To identify the function of two additional proteins suspected of playing a role in regulating formaldehyde levels, a group of researchers at the University of Idaho removed them from bacterial cells. And just like a cake without sugar and eggs, something was off. “If you don’t have [the two proteins] … you can see [the cells] accidentally overproduce formaldehyde, and they end up secreting it in the growth medium,” says Bazurto.

It’s still unclear exactly how these two proteins keep formaldehyde levels low in methylobacterium, but they aren’t alone in their efforts. Dozens of genes express proteins as formaldehyde levels change—a strong indicator of their importance in regulating the toxin. The challenge for Bazurto is knowing which of these genes, and the proteins they encode, actually play a role in formaldehyde metabolism. By manipulating each gene and looking at the results, Bazurto hopes to crack the code and establish which genes impact formaldehyde metabolism and their role in the process.

Once understood, these metabolic pathways could be hardwired into other microbes (like E. coli) through genetic engineering. Modified E. coli could consume methanol, neutralize formaldehyde, or produce marketable chemicals like biofuels and organic acids. In some facilities, formaldehyde is produced in large quantities as a building block for other chemicals. Wastewater remediation at these facilities would greatly benefit from bacteria genetically modified to directly consume formaldehyde and withstand toxic concentrations.

Throughout its industrial lifecycle, formaldehyde has the potential to creep into our air and water, putting humans at risk of exposure. The relationship between excessive formaldehyde exposure and human health issues—cancer, respiratory issues, and skin irritation—has been well established, yet we still know very little about how humans (and other organisms) sense and handle exposure to formaldehyde. As the search for practical applications in biotechnology, medicine, and environmental remediation continues, Bazurto remains fascinated by the basic science and “scenario where we actually know how to resolve formaldehyde toxicity itself.”

Reed Grumann is a writing intern in the Science Communication Lab, majoring in microbiology and political science. He can be reached at gruma017@umn.edu.

Image courtesy of Janelle Buzurto. Timecourse of Methylobacterium chemotaxing toward a capillary tube that has a formaldehyde plug in it. (Zero and five minutes). Cells seen faintly in the background at zero minutes begin to move toward the plug by the five minute point, forming a halo around the end of the tube.

 

Postdoctoral Research Associate

Postdoctoral Research Associate in Microbiology, Pharmacology, and Gastroenterology

A postdoctoral position is immediately available in the BioTechnology Institute and Department of Medicine, Div. of Gastroenterology, at the University of Minnesota.

Mike Sadowsky and Alex Khoruts are looking for a highly motivated postdoc to work on a project related to the development of new and novel formulations of microbiota-based for a variety of human diseases. This project follows up on our encapsulation technology for intestinal microbiota transplantation in adult patients. However, an important goal is development microencapsulation to enable oral administration of live microbiota to patients who may have difficulty with capsules, e.g., young children. This postdoctoral project will help develop the technology and follow engraftment of intestinal microbiota in animal models and patients using DNA sequencing, qPCR, metagenomics and culturing methods.

All applicants must have a Ph.D. in microbiology, pharmacology,  or a relevant field. Expertise in microbiology, microbial ecology, pharmacology, and analytical chemistry, is highly desired.

The position is for 2 years, and is annually renewable depending on performance and availability of funding The successful candidate will receive training in professional and personal development, research collaboration, presentation and publication of results, outreach, and mentoring. The position includes a competitive salary and health insurance. Review of applications will begin immediately and will continue until the position is filled. A near-term start date is desired.

Applications should include: (i) brief cover letter, (ii) curriculum vitae, (iii) a brief description of past research accomplishments and future research goals (under two pages), and (v) the names and contact information for three references. All materials should be submitted as a single combined PDF to Alex Khoruts (khour001@umn.edu) and Mike Sadowsky (sadowsky@umn.edu) with “Postdoc Application” in the subject line. Any questions should also be directed to these email addresses.

Biotechnology Training Program Contacts

Contact Us

Program Director

Prof. Claudia Schmidt-Dannert
Biochemistry Molecular Biology & Biophysics
274 Gortner Lab
1479 Gortner Avenue
St. Paul, MN 55108-6106
612-625-5782
schmi232@umn.edu

Program Administrator

Kristi Lecy
240 Gortner Labs
1479 Gortner Ave.
St. Paul, MN 55108
612-624-3489
klecy@umn.edu

BioTechnology Institute

140 Gortner Labs
1479 Gortner Avenue
St. Paul, MN 55108-6106

612-624-6774
612-625-5780 FAX
bti@umn.edu

Tori Lafky

Tori Lafky

Tori Lafky

Principal Office and Administrative Specialist

lafky004@umn.edu

Front desk support, package receiving and sending, e-mail list updates, U Market orders, audio/visual equipment and room scheduling.

Tori is a CBS alumni who has been with the admin cluster since 2019. She was inspired to join the college by her love of biology, and she still enjoys learning new scientific names and phylogenies and reading up on the latest discoveries. When the weather allows, Tori spends much of her free time outdoors, where she can usually be found playing tennis, hiking, or relaxing by a body of water. During the other nine months of the year, Tori enjoys trying new recipes, game nights, digital artwork, and pestering her friends with animal fun facts.