BTI publications: January 2024

BTI Publications January 2024

Elias, M. H., Sompiyachoke, K., Fernández, F. M., & Kamerlin, S. C. L. (2024). The ineligibility barrier for international researchers in US academia. EMBO Rep.

Haq, I. U., Christensen, A., & Fixen, K. R. (2024). Evolution of. Appl Environ Microbiol, e0210423.

Heili, J. M., Stokes, K., Gaut, N. J., Deich, C., Sharon, J., Hoog, T., . . . Adamala, K. P. (2024). Controlled exchange of protein and nucleic acid signals from and between synthetic minimal cells. Cell Syst, 15(1), 49-62.e44.

Hozalski, R. M., Zhao, X., Kim, T., & LaPara, T. M. (2024a). On-site filtration of large sample volumes improves the detection of opportunistic pathogens in drinking water distribution systems. Appl Environ Microbiol, e0165823.

Huang, M., Rueda-Garcia, M., Harthorn, A., Hackel, B. J., & Van Deventer, J. A. (2024). Systematic Evaluation of Protein-Small Molecule Hybrids on the Yeast Surface. ACS Chem Biol.

Lee, K. H., Distefano, M. D., & Seelig, B. (2023a). Facile immobilization of pyridoxal 5′-phosphate using p-diazobenzoyl-derivatized Sepharose 4B. Results Chem, 6.

Li, J., Wang, Y., Distefano, M. D., Wagner, C. R., & Pomerantz, W. C. K. (2024). Multivalent Fluorinated Nanorings for On-Cell. Biomacromolecules.

Medina-Chávez, N. O., Torres-Cerda, A., Chacón, J. M., Harcombe, W. R., De la Torre-Zavala, S., & Travisano, M. (2023b). Disentangling a metabolic cross-feeding in a halophilic archaea-bacteria consortium. Front Microbiol, 14, 1276438.

Phan, T., Ye, Q., Stach, C., Lin, Y. C., Cao, H., Bowen, A., . . . Hu, W. S. (2024). Synthetic Cell Lines for Inducible Packaging of Influenza A Virus. ACS Synth Biol.

Robinson, A. O., Lee, J., Cameron, A., Keating, C. D., & Adamala, K. P. (2024). Cell-Free Expressed Membraneless Organelles Inhibit Translation in Synthetic Cells. ACS Biomater Sci Eng.

Schreiber, M., Wonneberger, R., Haaning, A. M., Coulter, M., Russell, J., Himmelbach, A., . . . Waugh, R. (2024). Genomic resources for a historical collection of cultivated two-row European spring barley genotypes. Sci Data, 11(1), 66.

BTI publications: June – September 2023

BTI publications: June – September 2023

Publications by BTI faculty

Bohn, B., Chalupova, M., Staley, C., Holtan, S., Maakaron, J., Bachanova, V., & El Jurdi, N. (2023). Temporal variation in oral microbiome composition of patients undergoing autologous hematopoietic cell transplantation with keratinocyte growth factor. BMC Microbiol, 23(1), 258.

Cai, Z., Donahue, N., Jones, K. C., McNeill, K., Manaia, C., Novak, P. J., & Vikesland, P. J. (2023). Best Papers from 2022 published in the. Environ Sci Process Impacts, 25(7), 1141-1143.

Chang, Y. C., Lin, K., Baxley, R. M., Durrett, W., Wang, L., Stojkova, O., . . . Bielinsky, A. K. (2023). RNF4 and USP7 cooperate in ubiquitin-regulated steps of DNA replication. Open Biol, 13(8), 230068.

Chowdhury, S., Kennedy, J. J., Ivey, R. G., Murillo, O. D., Hosseini, N., Song, X., . . . Paulovich, A. G. (2023). Proteogenomic analysis of chemo-refractory high-grade serous ovarian cancer. Cell, 186(16), 3476-3498.e3435.

Costa, K. C., & Whitman, W. B. (2023). Model Organisms To Study Methanogenesis, a Uniquely Archaeal Metabolism. J Bacteriol, 205(8), e0011523.

El Jurdi, N., Holtan, S. G., Hoeschen, A., Velguth, J., Hillmann, B., Betts, B. C., . . . Shields-Cutler, R. (2023). Pre-transplant and longitudinal changes in faecal microbiome characteristics are associated with subsequent development of chronic graft-versus-host disease. Br J Haematol.

Golinski, A. W., Schmitz, Z. D., Nielsen, G. H., Johnson, B., Saha, D., Appiah, S., . . . Martiniani, S. (2023). Predicting and Interpreting Protein Developability Via Transfer of Convolutional Sequence Representation. ACS Synth Biol, 12(9), 2600-2615.

Gralnick, J. A., & Bond, D. R. (2023). Electron Transfer Beyond the Outer Membrane: Putting Electrons to Rest. Annu Rev Microbiol, 77, 517-539.

Hassan, A. Z., Ward, H. N., Rahman, M., Billmann, M., Lee, Y., & Myers, C. L. (2023). Dimensionality reduction methods for extracting functional networks from large-scale CRISPR screens. Mol Syst Biol, e11657.

Hill, E. R., Chun, C. L., Hamilton, K., & Ishii, S. (2023). High-Throughput Microfluidic Quantitative PCR Platform for the Simultaneous Quantification of Pathogens, Fecal Indicator Bacteria, and Microbial Source Tracking Markers. ACS ES T Water, 3(8), 2647-2658.

Hu, L. S., D’Angelo, F., Weiskittel, T. M., Caruso, F. P., Fortin Ensign, S. P., Blomquist, M. R., . . . Tran, N. L. (2023). Integrated molecular and multiparametric MRI mapping of high-grade glioma identifies regional biologic signatures. Nat Commun, 14(1), 6066.

Huang, S., Bergonzi, C., Smith, S., Hicks, R. E., & Elias, M. H. (2023). Field testing of an enzymatic quorum quencher coating additive to reduce biocorrosion of steel. Microbiol Spectr, e0517822.

Justyna, K., Das, R., Lorimer, E. L., Hu, J., Pedersen, J. S., Sprague-Getsy, A. M., . . . Distefano, M. D. (2023). Synthesis, Enzymatic Peptide Incorporation, and Applications of Diazirine-Containing Isoprenoid Diphosphate Analogues. Org Lett, 25(36), 6767-6772.

Kalambokidis, M., & Travisano, M. (2023). Multispecies interactions shape the transition to multicellularity. Proc Biol Sci, 290(2007), 20231055.

Kong, W., Qiu, L., Ishii, S., Jia, X., Su, F., Song, Y., . . . Wei, X. (2023). Contrasting response of soil microbiomes to long-term fertilization in various highland cropping systems. ISME Commun, 3(1), 81.

Lane, B. R., Anderson, H. M., Dicko, A. H., Fulcher, M. R., & Kinkel, L. L. (2023). Temporal variability in nutrient use among Streptomyces suggests dynamic niche partitioning. Environ Microbiol.

Li, J., Arnold, W. A., & Hozalski, R. M. (2023). Spatiotemporal Variability in. Environ Sci Technol, 57(37), 13959-13969.

Lu, M., Lee, Z., Lin, Y. C., Irfanullah, I., Cai, W., & Hu, W. S. (2023). Enhancing the production of recombinant adeno-associated virus in synthetic cell lines through systematic characterization. Biotechnol Bioeng.

McConnell, A., & Hackel, B. J. (2023). Protein engineering via sequence-performance mapping. Cell Syst, 14(8), 656-666.

Miley, K., Meyer-Kalos, P., Ma, S., Bond, D. J., Kummerfeld, E., & Vinogradov, S. (2023). Causal pathways to social and occupational functioning in the first episode of schizophrenia: uncovering unmet treatment needs. Psychol Med, 53(5), 2041-2049.

Morra, A., Schreurs, M. A. C., Andrulis, I. L., Anton-Culver, H., Augustinsson, A., Beckmann, M. W., . . . Investigators, k. (2023). Association of the CHEK2 c.1100delC variant, radiotherapy, and systemic treatment with contralateral breast cancer risk and breast cancer-specific survival. Cancer Med, 12(15), 16142-16162.

Ndinga-Muniania, C., Wornson, N., Fulcher, M. R., Borer, E. T., Seabloom, E. W., Kinkel, L., & May, G. (2023). Cryptic functional diversity within a grass mycobiome. PLoS One, 18(7), e0287990.

Qualls, D. A., Lambert, N., Caimi, P. F., Merrill, M. H., Pullarkat, P., Godby, R. C., . . . Salles, G. A. (2023). Tafasitamab and lenalidomide in large B cell lymphoma: real-world outcomes in a multicenter retrospective study. Blood.

Sakai, A., Jonker, A. J., Nelissen, F. H. T., Kalb, E. M., van Sluijs, B., Heus, H. A., . . . Huck, W. T. S. (2023). Cell-Free Expression System Derived from a Near-Minimal Synthetic Bacterium. ACS Synth Biol, 12(6), 1616-1623.

Seabloom, E. W., Caldeira, M. C., Davies, K. F., Kinkel, L., Knops, J. M. H., Komatsu, K. J., . . . Borer, E. T. (2023). Globally consistent response of plant microbiome diversity across hosts and continents to soil nutrients and herbivores. Nat Commun, 14(1), 3516.

van Hees, D., Hanneman, C., Paradis, S., Camara, A. G., Matsumoto, M., Hamilton, T., . . . Kodner, R. B. (2023). Patchy and Pink: Dynamics of a Chlainomonas sp. (Chlamydomonadales, Chlorophyta) algal bloom on Bagley Lake, North Cascades, WA. FEMS Microbiol Ecol.

Vitt, J. D., Hansen, E. G., Garg, R., & Bowden, S. D. (2023). Bacteria intrinsic to Medicago sativa (alfalfa) reduce Salmonella enterica growth in planta. J Appl Microbiol, 134(9).

Wackett, L. P. (2023a). A microbial evolutionary approach for a sustainable future. Microb Biotechnol, 16(10), 1895-1899.

Wackett, L. P. (2023b). Acid stress in microbes: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environ Microbiol Rep, 15(4), 335-336.

Wackett, L. P. (2023c). Cyanobacterial algal blooms: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environ Microbiol, 25(7), 1375-1376.

Wackett, L. P. (2023d). Microbes at low substrate concentrations: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environ Microbiol, 25(6), 1218-1219.

Wackett, L. P. (2023e). Web alert: Fabrication with microbial spores: An annotated selection of World Wide Web sites relevant to the topics in Microbial Biotechnology. Microb Biotechnol, 16(10), 2007-2008.

Wackett, L. P. (2023f). Web Alert: Solvent stress on environmental microbes: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environ Microbiol, 25(8), 1563-1564.

Wackett, L. P. (2023g). Web alert: Two-phase biocatalysis. Microb Biotechnol, 16(8), 1702.

Wackett, L. P., & McKnight. (2023). Web alert: Microbial biofilm catalysis. Microb Biotechnol, 16(7), 1577-1578.

Wang, H., Feyereisen, G. W., Wang, P., Rosen, C., Sadowsky, M. J., & Ishii, S. (2023). Impacts of biostimulation and bioaugmentation on woodchip bioreactor microbiomes. Microbiol Spectr, e0405322.

Wang, Q. Q., Sun, M., Tang, T., Lai, D. H., Liu, J., Maity, S., . . . Long, S. (2023). Functional screening reveals. mBio, 14(4), e0130923.

Wang, Z., Ishii, S., & Novak, P. J. (2023). Quantification of depth-dependent microbial growth in encapsulated systems. Microb Biotechnol.

Worner, K., Liu, Q., Maschhoff, K. R., & Hu, W. (2023). Identification of RNA-binding proteins’ direct effects on gene expression via the degradation tag system. RNA, 29(10), 1453-1457.

Zhang, Q., Xuan, Q., Wang, C., Shi, C., Wang, X., Ma, T., . . . Chen, C. (2023). Bioengineered “Molecular Glue”-Mediated Tumor-Specific Cascade Nanoreactors with Self-Destruction Ability for Enhanced Precise Starvation/Chemosynergistic Tumor Therapy. ACS Appl Mater Interfaces, 15(35), 41271-41286.

Zhang, W., Dong, H., Wang, X., Zhang, L., Chen, C., & Wang, P. (2023). Engineered. ACS Appl Mater Interfaces.

Zhu, B., Du, Z., Dai, Y., Kitaguchi, T., Behrens, S., & Seelig, B. (2023). Nanodroplet-Based Reagent Delivery into Water-in-Fluorinated-Oil Droplets. Biosensors (Basel), 13(8).

Zlotorzynska, M., Chea, N., Eure, T., Alkis Ramirez, R., Blazek, G. T., Czaja, C. A., . . . Grigg, C. T. (2023). Residential social vulnerability among healthcare personnel with and without severe acute respiratory coronavirus virus 2 (SARS-CoV-2) infection in Five US states, May-December 2020. Infect Control Hosp Epidemiol, 1-7.



Friday May 5, 2023

(One day symposium)

McNamara Alumni Center
University of Minnesota
Minneapolis, MN USA.

Map & Directions

 Symposium Time Table




Opening Messages

  • Professor Romas Kazlauskas  (UMN)
  • Professor Ismail (PPIC)
  • President Amano (Video message: Amano Enzyme Japan)





Presentation 1

Presentation 2

Presentation 3

Presentation 4

11:15-12:00 Panel discussion

Poster session




Presentation 5

Presentation 6

Presentation 7

15:00-15:20 Coffee Break




Presentation 8

Presentation 9

Presentation 10



Messages from Dr. Shotaro Yamaguchi (Amano Enzyme Japan)
17:00-18:30 Cocktail hour



Romas Kazlauskas

Romas Kazlauskas, Ph.D.

Professor, Biochemistry, Molecular Biology & Biophysics
Biotechnology Institute
University of Minnesota

Romas Kazlauskas studied chemistry at the Massachusetts Institute of Technology (Ph.D.) and Harvard University (postdoc with George Whitesides). He worked at General Electric Company (1985-88) and McGill University, Montreal, Canada (1988-2003) and is currently a professor in Biochemistry, Molecular Biology and Biophysics at the University of Minnesota. He has been a visiting professor in Germany, Sweden and South Korea. He is an expert in protein engineering of enzymes for biocatalysis and the author of a forthcoming textbook on protein engineering (

 Research Interests

  • Engineering new catalytic activity in enzymes
  • Rational design of enzyme properties
  • Enzyme applications to support sustainability
Shotaro Yamaguchi

Shotaro Yamaguchi, PhD.

CTO, Managing Director of Innovation
Amano Enzyme Inc.

Shotaro Yamaguchi joined Amano in 1984 after receiving a master’s degree in food engineering from the Graduate School of Agriculture, Kyoto University. Since then, he has been engaged in industrial enzymology, fungal genetic engineering, microbial fermentation, and food and medical enzyme applications. He received Ph.D. degree from Kyoto University on lipase in 1991 and spent three years at the Institute of Food Research (UK) from 1999 to 2001. He discovered a novel protein-modifying enzyme, protein glutaminase.

He received the following awards: Encouragement Award from Brewing Society of Japan (2003) and Technology Award from Japan Society for Bioscience, Biotechnology, and Agrochemistry (2010). He is an active Editor for Applied Microbiology and Biotechnology, Headquarters Officer/Auditor for Japan Society for Bioscience, Biotechnology, and Agrochemistry, and Representative for The Society for Biotechnology, Japan.

Todd Hester

Todd Hyster, Ph.D.

Associate Professor
Department of Chemistry and Chemical Biology
Cornell University

Prof. Todd Hyster is an Associate Professor of Chemistry and Chemical Biology at Cornell University. He received his B.S. in Chemistry from the University of Minnesota. He did his Ph.D. studies with Tomislav Rovis at Colorado State University. As part of his Ph.D., he was a Marie Curie Fellow with Thomas Ward at the University of Basel. He was an NIH Postdoctoral Fellow with Prof. Frances Arnold at Caltech. He started his independent career at Princeton University in 2015. His group has developed new methods in photoenzymatic catalysis.

Research Interests
  • Photoenzymatic Catalysis
  • Enzyme engineering via directed evolution
  • Selective organic synthesis

Photoenzymatic Catalysis – Using Light to Reveal New Enzyme Functions
Todd K. Hyster

Enzymes are exquisite catalysts for chemical synthesis, capable of providing unparalleled levels of chemo-, regio-, diastereo- and enantioselectivity. Unfortunately, biocatalysts are often limited to the reactivity patterns found in nature. In this talk, I will share my groups efforts to use light to expand the reactivity profile of enzymes. In our studies, we have exploited the photoexcited state of common biological cofactors, such as NADH and FMN to facilitate electron transfer to substrates bound within enzyme active sites. In other studies, we found that enzymes will electronically activate bound substrates for electron transfer. In the presence of common photoredox catalysts, this activation can be used to direct radical formation to enzyme active sites. Using these approaches, we can develop biocatalysts to solve long-standing selectivity challenges in chemical synthesis.

    Stefan Lutz

    Stefan Lutz, Ph.D.

    Sr VP Research
    Codexis Inc.

    Stefan received a B.Sc. in chemistry/chemical engineering from the Zurich University of Applied Sciences, an M.Sc. in Biotechnology from the University of Teesside and a Ph.D. in chemistry from the University of Florida. He was a postdoctoral fellow at Pennsylvania State University. He joined Codexis in 2020 as the Senior Vice President of Research to lead the company’s research team advancing the technology platform, as well as the discovery and engineering of novel enzymes. Prior to his arrival in Redwood City, he was a Professor and Chair of the Chemistry Department at Emory University, having joined the university in 2002 and ascending to Chemistry Department Chair in 2014. Stefan is interested in advanced technologies for creating new, innovative, and economically-sustainable enzyme solutions to benefit society, industry, and the planet.

    Research Interests

    • Advanced technologies for enzyme design and engineering
    • Engineered enzyme applications
    • Biocatalysis

    Engineering Enzyme Products
    Stefan Lutz

    Codexis’ CodeEvolver® directed evolution technology has been applied to improve enzymes for specific functions for well over a decade. Advances in high-throughput gene & protein synthesis (build) and biochemical screening (test) in combination with advanced data analytics (learn) and computational design tools have, and continue to, enable the optimization and drive increasing complexity in developing novel biocatalysts for sustainable manufacturing, the life sciences, and the discovery and optimization of biologics.

    Tomoko Matsuda, Ph.D.

    Associate Professor
    Department of Life Science and Technology
    Tokyo Institute of Technology

    Tomoko Matsuda received a doctoral degree in science from Kyoto University (2000). Her doctoral thesis is about the biocatalytic asymmetric reduction of ketone for organic synthesis. She has been engaged in research on biocatalysis since then. She was appointed as an assistant professor at Ryukoku University in Japan (1999-2004) and began the study for biocatalysis using pressurized carbon dioxide. She was appointed as an associate professor in 2004 at the Tokyo Institute of Technology in Japan. She published over 130 scientific articles and received the following awards; the Taisho Pharmaceutical Research Planning Award from the Society of Synthetic Organic Chemistry, Japan (2001), the Morita Scientific Research Encouragement Award from the Japanese Association of University Women (2006), the Shiseido Woman Researcher Science Grant from Shiseido (2011), the Takeda International Contribution Award from Takeda Rika Kogyo (2018).

    Research Interests

    • Utilization of pressurized CO2 for biocatalysis
    • Green chemistry using biocatalysis

    Utilization of Carbon Dioxide as Solvent and Substrate for Biocatalysis
    Tomoko Matsuda

    As carbon dioxide (CO2) is an abundant carbon source and is causing global warming, developments in its utilization methods have been awaited. Therefore, pressurized CO2such as supercritical CO2 has been applied as a solvent for organic synthesis to develop efficient reactions replacing ordinary organic solvents derived from fossil fuel. However, the application of pressurized CO2 to biocatalysis has been limited. Therefore, we have been studying on utilization of CO2 as a solvent for lipase-catalyzed transesterification reactions and as a substrate for biocatalytic carboxylation reactions.

    Supercritical and liquid CO2 has been used for lipase-catalyzed transesterifications to replace conventional organic solvents. In this study, CO2-expanded liquids, liquids expanded by dissolving pressurized CO2, were utilized since they can be achieved at a lower pressure than supercritical and liquid CO2. Then, we found that for lipase-catalyzed transesterifications of bulky substrates, such as 1-(1-adamantyl)ethanol, o-substituted 1-phenylethanol analogs, and substituted 1-tetralol analogs, the conversions were higher for the reaction in CO2-expanded liquids than those in the corresponding liquids without CO2 (Figure 1).

    Matsuda Figure 1

    Figure 1 Solvent engineering using CO2 for lipase-catalyzed transesterifications

    On the other hand, a two-layer solvent system consisting of an aqueous buffer and the carbon dioxide layer was utilized for the carboxylation reactions since carboxylation enzymes are not stable in pressurized CO2 without bulk water. Catalyzed by enzymes from a thermophilic microorganism, Thermoplasma acidophilum isocitrate dehydrogenase (TaIDH) and T. acidophilum glucose dehydrogenase (TaGDH), the reductive carboxylation reactions have been successfully conducted using CO2 as a substrate (Figure 2). These enzymes were also co-immobilized to achieve higher stabilities and activities by forming an enzyme-inorganic hybrid nanocrystal.

    Matsuda Figure 2

    Figure 2 Utilization of CO2v as a substrate of biocatalytic carboxylation

    Anne Meyer

    Anne Meyer, Ph.D.

    Anne S. Meyer is Professor of Enzyme Technology, Head of the Protein Chemistry & Enzyme Technology Section at Dept. of Biotechnology and Biomedicine, Technical University of Denmark. The Section comprises 8 professor research groups, in total ~75 persons, incl. ~20 PhD students. She is group leader of Enzyme Technology in the Section.

    Research interests:

    • Applied enzyme technology, incl. enzyme enzymatic biorefining of biomass, agro-industrial side streams, starch, pectin, and seaweeds for production of bioactives and functional food compounds.
    • Enzymatic synthesis of human milk oligosaccharides.
    • Enzymatic degradation of plastic, and enzymatic conversion of CO2.
    • Bioinformatics, enzyme characterization, assays, kinetics, and carbohydrate chemistry

    New food processes and ingredients via targeted enzyme catalysis
    Anne S. Meyer, Technical University of Denmark, Denmark

    One of the major challenges confronting the modern food supply chain is providing safe, nutritious, and preferably functionally healthy food to an expanding global population while utilizing resources sensibly and protecting the environment and the climate. Many agro-industrial co-processing streams are rich in complex plant fibers that should not go to waste, as they may be a valuable source of beneficial, ‘prebiotic’ dietary fibers or a feedstock for functional ingredients production. Corn bran, a residue from large scale corn starch processing, is for example rich in highly substituted feruloylated glucurono-arabinoxylan, and even includes diferuloyl cross links, and is considered recalcitrant to enzymatic modification. We recently discovered a bacterial endo-xylanase (GH30 from Dickeya chrysantemi) that attacks complex corn arabinoxylan to enable gentle solubilization of substituted glucurono-arabinoxylan oligomers1. The recent news is that the GH30-solubilized corn arabinoxylan molecules modulate the human gut microbiota during simulated colon fermentation in vitro, paving the way for using corn bran streams as a resource to generate new soluble prebiotics2. Human milk oligosaccharides (HMOs) are unique, beneficial oligosaccharides in human breast milk. Enzymatic synthesis of HMOs is attractive to create new additives for infant formula and other products. Several glycoside hydrolases can catalyze transglycosylation (incl. transfucosylation) for precise enzymatic synthesis of nature-identical HMO products3. To attain high yields, we are using different types of protein engineering approaches to modify the enzyme to catalyze relevant transglycosylations at high yield4. Citrus-pectin residues have turned out to hold fucosylated xyloglucan that can serve as a source of fucose for enzymatic production of fucosylated HMOs via targeted enzymatic transfucosylation5. Seaweeds, i.e. marine macroalgae, have for decades been a source of food hydrocolloids. As the demand for hydrocolloids keep increasing, kelp seaweeds are now cultivated in the Northern hemisphere and new enzymes are being discovered for enzymatic refining options for kelp biorefining beyond extraction of hydrocolloids. One line of our research relates to enzymatic modification of alginate from kelp6, another concerns enzymatic extraction and modification of fucoidan for medical uses7,8,9. Lastly, we have recently introduced  new microbial 4-alpha-glucanotransferases to modify starch functionality10.


    1. Munk et al., 2020. ACS Sust Chem Eng 8 (22), 8164-8174.
    2. Lin et al. 2023. J Agric Food Chem 71, 385-3897
    3. Zeuner and Meyer 2020. Carb Res 493, 108029.
    4. Zeuner et al. 2020 J of Fungi 6(4), 295-313
    5. Nielsen et al. 2022. Carb Res. 519, 198627
    6. Pilgaard et al. 2021. J of Fungi 7, 80-95.
    7. Nguyen et al. 2020. Marine Drugs 18(6), 296-313
    8. Trang et al. 2022. Frontiers Plant Sci 13, 823668
    9. Ohmes et al. 2020 Marine Drugs 18, 481-418
    10. Christensen et al. 2023. Intl J Biol Macromol 224, 105-114.


    Jun Ogawa, Ph.D.

    Division of Applied Life Sciences,
    Graduate School of Agriculture,
    Kyoto University

    Jun Ogawa studied applied microbiology and completed his doctorate in 1995 at Kyoto University and became an assistant professor at the same university. He was a visiting researcher at French National Institute for Agricultural Research (INRA) (2006-2007) and has appointed as a full professor of the current position in 2009. He has published over 270 papers in applied microbiology such as bioprocess development, microbial metabolism analysis, etc. He was awarded “Agrochemistry Award for the Encouragement of Young Scientists” by Japan Society for Bioscience, Biotechnology, and Agrochemistry (2006), “Oleoscience Award” by the Japan Oil Chemists’ Society (2015 and 2020), “Society Award of Japanese Association for Food Immunology” (2018), “Ching Hou Biotechnology Award” (2020) and “Fellow” (2021) by American Oil Chemists’ Society, and “Chevreul Medal” by the French association for the study of lipids (2021).

    Research Interests

    • Microbial physiology
    • Fermentation technology
    • Enzyme technology
    • Metabolic engineering
    • Microbial consortia studies

    From function to genes, enzymes, and communities; creating novel biotechnology tools
    Jun Ogawa

    Information obtained through detail analysis of microbial function leads to finding of unexpected enzymes, metabolisms, and communities useful for bioprocess design. The screening of the novel biotechnological tools required analysis of unrevealed function with difficulties in establishing the methods, however, recent omics technologies make easier to identify the novel genes, enzymes, and communities, expanding their bioprocess application. Here, examples of bioprocess development by applying unique tools found through functional analysis of microbial metabolisms are introduced.

    1)  Novel amino acid metabolism involving hydroxylase- and dehydrogenase- catalyzing reactions was found. The hydroxylase library expanded through genomic information analysis and coupled with related enzymes made possible the production of various chiral hydroxy amino acids and chiral amino acid sulfoxides1,2.

    2)  Novel fatty acid reducing metabolism, polyunsaturated fatty acid (PUFA) saturation metabolism, was found in gut microorganisms. The metabolism involving four enzymes of hydratase, dehydrogenase, isomerase, and reductase was applied to the production of various hydroxy, oxo, and enone fatty acids with unique physiological activity useful for health3. Novel desaturases involved in PUFA biosynthesis4, and cyclooxygenase5 and P450 monooxygenase6 generating PUFA-derivatives were found and applied to the production of physiologically active PUFA derivatives.

    3)  Novel nucleosidases acting on 2’-O-methylribonucleosides were found and their ribosyl transferring activity was applied for the production of 2’-O-methylribonucleosides7. A novel enzyme, allantoinase, in the purine degradation metabolism was found to useful for the production of chiral amides via prochiral cyclic imide hydrolysis8. The reversible reactions involved in nucleoside degradation metabolism were applied to produce deoxyribonucleosides9.

    4)  Phytochemicals in foods and medicines are changed into bioactive molecules by gut microbial metabolism. The analysis of gut microbial metabolism of phytochemicals such as glucosinolates10, ellagic acid11, baicalin12, and astragaloside IV13 resulted in finding of novel enzymes. Besides, novel aglycon-glycosylating enzymes were found in microorganisms and applied to enhance the applicability of phytochemicals14,15.

    5)  Nitrifying bacteria play an important role in generating nitrate for crop cultivations. Organic nitrogen compounds are converted to nitrate through ammonification and nitrification. Understanding the interactions of the nitrifying microbial consortia is important for controlling the mineralization of organic nitrogen compounds. We established a controllable model consortium for ammonification and nitrification under organic conditions using a co-culture of only three strains selected through metagenomic analysis16,17. 


    1. Hibi, M. et al. Appl Microbiol Biotechnol, 97, 2467-2472 (2013))
    2. Hibi, M. et al. Commun Biol, 4:16 (2021).)
    3. Kishino, S. et al. Proc Natl Acad Sci USA, 110, 17808-17813 (2013))
    4. Mo, B. K. H. et al. Biosci Biotechnol Biochem, 85, 1252–1265 (2021))
    5. Mohd Fazli, F. A. et al. Biosci Biotechnol Biochem, 83, 774-780 (2019))
    6. Saika, A. et al. FASEB Bioadv, 2, 59-71 (2020))
    7. Mitsukawa, Y. et al. J Biosci Bioeng, 125, 38-45 (2017))
    8. Nojiri, M. et al. Appl Microbiol Biotechnol, 99, 9961-9969 (2015))
    9. Horinouchi, N. et al. Microbial Cell Factories, 11, 82, (2012))
    10. Watanabe, H. et al. Sci Rep, 11, 23715, (2021))
    11. Watanabe, H. et al. J Biosci Bioeng, 129, 552-557 (2020))
    12. Sakurama, H. et al. Appl Microbiol Biotechnol, 98, 4021-4032 (2014))
    13. Takeuchi, D. M. et al. Biosci Biotechnol Biochem, 86(10) 1467–1475 (2022))
    14. Suzuki, T. et al. Biocatal Agric Biotechnol, 30, 101837 (2020))
    15. Kimoto, S. et al. J Biosci Bioeng, 134, 213-219 (2022))
    16. Saijai, S. et al. Biosci Biotechnol Biochem, 80, 2247-2254 (2016))
    17. Meeboon, J. et al. Sci Rep, 12, 7968 (2022)

    Mission Statement

    Mission Statement

    Our Mission

    The BioTechnology Institute (BTI) provides advanced research, training, and industry interaction in biological process technology, a major area of biotechnology research. The Institute is the central University of Minnesota vehicle for coordinated research in the biological, chemical, and engineering aspects of biotechnology and home to the MnDRIVE Environment Initiative 

    BTI’s Mission

    (1) Advance and support cross-disciplinary research and innovation at the forefront of biotechnology, (2) Support workforce and professional skills training in biotechnology, (3) Facilitate and develop industry relations in biotechnology, (4) Serve as a central biotechnology resource on campus and (5) Provide biomanufacturing expertise and services to the University, Minnesota, and industry through its BioResource Center (BRC).

    BTI Accomplishes its mission by:

    (1) bringing together life-science and engineering faculty, researchers, postdocs, and students with shared research interests in biotechnology-related disciplines and
    (2) providing administrative support and resources for scientific exchange, networking, collaborative research, and professional skills development and training of its community members.

    Core Values

    BTI is dedicated to fostering a safe, equitable, inclusive, and collaborative environment for its students, researchers, staff, and faculty. BTI values diversity of backgrounds, disciplines, and experiences as critical factors for achieving its mission of cutting-edge biotechnology research, training, and service.
    The following core principles guide BTI:
    Collaboration and Teamwork
    Innovation and Excellence

    Vision and Goals

    BTIs goals are:

    I. To be a major driver for the creation of a sustainable bioeconomy in MN by promoting and prioritizing cutting-edge fundamental and applied research towards the development of crucial enabling biotechnologies and synthetic biology approaches. BTI drives advances in a broad array of applications, including:

    • (1) carbon capture and conversion,
    • (2) sustainable biomanufacturing of value-added compounds and advanced materials,
    • (3) bioremediation, recycling, and recovery of valuable elements and molecules,
    • (4) discovery and design of therapeutics, diagnostics, materials, and processes
    II To become a key player on campus for future MN bioeconomy workforce development by:
    (1) offering up-to-date biotechnology training, professional skills development, and industrial networking
    opportunities to our students, postdocs, and research staff.
    (2) supporting the creation and implementation of relevant biotechnology curricula and skills training activities.
    III. To expand BTIs visibility and footprint locally and nationally by:
    (1) expanding its industrial relations and connections through its BRC, faculty expertise, and entrepreneurship
    (2) effective communication and promotion.
    2023 Spring Events

    2023 Spring Events

    Minneapolis skyline at sunset with roads and trains in the foreground

    2022 Fall Eevnts

    University of Minnesota- BioTechnology Institute

    New fall events will be posted as information becomes available 

    Check back in Mid-Septembeer to see all the events for this upcoming fall.

    Visual Science

    Visual Science

    Visual Sicence
    Linda Kinkel’s research focuses on the ecology of microbial communities in native prairie and agricultural soils. Kinkel’s work on the ecology and evolutionary biology of streptomycetes and other antibiotic producing bacteria has potential applications in the management of soil-borne plant pathogens.  Her current research, supported by MnDRIVE, will examine the impact of microbial inoculants and carbon inputs on disease suppression and plant productivity in Minnesota’s potato crop.  Learn more about Linda’s research.
    Visual Science