Ludmilla Aristilde

Ludmilla Aristilde

Ludmilla Aristilde

Associate Professor, Civil and Environmental Engineering and (by courtesy) Chemical and Biological Engineering
Faculty Fellow, Center for Synthetic Biology
University of Minnesota

Multi-Omics Investigation of Carbon Flux Networks in Environmental Bacteria of Biotechnological Relevance

Abstract:

Biological conversion of organic wastes into valuable products represents an important component of a sustainable energy portfolio towards decreasing our reliance on petroleum-based chemical production. Critical to this effort is a fundamental understanding of the metabolic networks that control carbon utilization by environmental bacteria, which provide an array of potential biological platforms to develop new chassis for biotechnological targets.

Dr Aristilde and her team has developed 13C-metabolomics approaches coupled with other omics techniques to unravel the metabolic flux networks in bacterial species isolated from soils, plant roots, and wastewater streams. We combine high-resolution fingerprinting of metabolites and metabolic reactions with genome-based predictions, proteomics analyses, and fluxomics modeling.

This walk will present multi-omics investigations to obtain new insights on the metabolic mechanisms underlying carbon flux routing in Pseudomonas putida, Priestia megaterium (formerly known as Bacillus megaterium), and Comamonas testosteroni. Guiding principles to identify target pathway candidates for metabolic engineering will also be highlighted. 

Sean Elliot

Sean Elliot

Sean Elliot
Boston University

3:30 September 22, 2022
239 Gortner
Reception to follow

Redox Enzymes of Carbon Transformation, through an electrochemical lens

Abstract:

This seminar will use iron-sulfur cluster proteins and enzymes as examples to illustrate how a far-ranging series of redox-active metalloproteins can be examined through an electrochemical lens, to understand the role that specific redox couples play in complex enzymatic mechanisms and biological pathways. The main focus will be the impact and interplay of ferredoxin — small, ubiquitous iron-sulfur cluster redox relays — upon the function of members of the oxo-acid:ferredoxin oxidoreductase (OFOR) enzyme superfamily will be discussed. OFORs are essential players in the carbon cycle, and are considered to be reversible enzymes. However, like hydrogenases and other reversible enzymes, the design features that nature has employed to modulate the ‘bias’ of reactive toward either oxidation or reduction is unclear. And, like hydrogenases, understanding the redox couples of OFORs has proven challenging historically. Here, a combination of electrochemical and spectroscopic studies will be presented as a series of OFOR enzymes from varying biological sources and pathways will be compared and contrasted.

Art Edison

Art Edison

Art Edison 

University of Georgia

September 29, 2022
3:30 PM, 151D Amundson Hall
East Bank

Unique Strengths of NMR Metabolomics:  In vivo metabolism and improved compound identification

Metabolomics is an important component of systems biology research in biology and biomedicine. Two major technologies are widely used in metabolomics research, mass spectrometry and NMR spectroscopy. Both have their own strengths and weaknesses. Recently, LC-MS has gained in popularity, thanks largely to its high sensitivity and ability to detect 10s of thousands of features.

In this talk, I will highlight some of the unique strengths of NMR metabolomics, most notably approaches to study metabolic dynamics in real-time in cells or microorganisms. I will also discuss the difficulty that the entire field faces in confident metabolite identification and will present recent approaches to better combine NMR with LC-MS and computational chemistry to improve compound identification.

Edison, A. S.; Colonna, M.; Gouveia, G. J.; Holderman, N. R.; Judge, M. T.; Shen, X.; Zhang, S. NMR: Unique Strengths That Enhance Modern Metabolomics Research. Anal Chem 2021, 93 (1), 478-499. DOI: 10.1021/acs.analchem.0c04414.