Q&A with BTI Director Claudia Schmidt-Dannert
As the BioTechnology Institute’s new director, longtime faculty member Claudia Schmidt-Dannert aims to plant the institute firmly on the front lines of emerging needs and opportunities.
By Mary Hoff
Two decades ago, Claudia Schmidt-Dannert knew exactly where she wanted to be: at the frontlines of the intersection of biology and technology. And that meant joining the faculty of the University of Minnesota’s BioTechnology Institute. “BTI is actually one of the reasons I came to the University of Minnesota, because of this interaction between life sciences and engineering,” she says. “That’s very unique here.”
Named BTI director in January of this year, Schmidt-Dannert is working not only to strengthen interdisciplinary ties within the community as it recovers from disruptions due to the Covid pandemic, but also to firmly establish BTI’s position at the frontlines of biotechnology research and application during what could be the field’s most exciting times yet.
What do you hope to accomplish as director?
My focus is on keeping pace with biotechnology, really thinking about, “What are the next big things?” For example, biomanufacturing, biofabrication, new types of functional biomaterials for a range of applications—this is the future. We really must position ourselves very well in this space, make sure we are at the forefront of these types of efforts in biotechnology research, applied science, and development. We need to make sure we have the right people, resources and get people to collaborate across disciplines on these topics. We want to be spearheading new developments in biotechnology, looking at what biology can do to improve our future.
What strengths do you bring to the role?
I have a broad research background. I’m working both in fundamental areas of biotechnology but also in the engineering space, and my research spans from molecules to systems. I’m also very applied-minded. And I maybe bring a little bit more of a fresh perspective. We have a strong focus in bioremediation and environmental aspects of biotechnology. There are other and emerging focus areas in biootechnology that we should pay attention too and emphasize more. Also, I like collaboration and community-building. This is very important with a variety of stakeholders.
How important will BTI’s role in workforce training and strengthening Minnesota’s biotechnology be under your administration?
Most of our undergraduate and graduate students as well as postdocs will not follow an academic or medical career and instead many will seek out other employment in industry. There is high demand for skilled individuals from the biotechnology and biomanufacturing sector. We need to make sure that our students and postdocs are well prepared for these good-paying jobs. Over the past few years, BTI has collaborated with industrial partners on workforce development. I see this as an area that should be expanded. In addition, I feel strongly that meaningful biotechnology training should be incorporated at the undergraduate levels—where BTI can contribute. BTI also administers a small masters-level graduate program in microbial engineering that is aimed at students that want to go into industry. The student and postdoc-level workshop series as well as workshops offered through our NIH Biotechnology training program provide additional career relevant, professional skill sets.
Where do you see the big opportunities in the years ahead?
Biotechnology is very broad field, so there are many opportunities for different types of research. For example, synthetic biology is experiencing an influx of many new ideas in areas like materials sciences, sustainable biomanufacturing, artificial intelligence and computing. Addressing climate change, developing a circular bioeconomy, biomanufacturing and biofabrication—that’s where I see a lot of opportunities.
We also have very unique resources in Minnesota that go beyond our strong medical and agricultural industries. Northern Minnesota is rich in forests, water and minerals. My goal is to look at these resources as well as associated societal and environmental challenges associated with accessing these resources from a biotechnology perspective. I believe that there are many unique Minnesota-specific opportunities for biotechnology and bioeconomy development in our state.
What do you see as growth areas for the Institute?
I would like to continue building momentum and strength in synthetic biology. We have a research cluster in this area, but we have to further ramp up our expertise in this area. We are also lacking in certain cell-based manufacturing systems, especially for pharmaceuticals and biologics – we are not particularly strong in this area. Right now. we’re focused mostly on microbial systems with the new BRC [Biotechnology Resource Center] Microbial Cell Production Facility. But I also think mammalian cell cultures offer new opportunities for research. We need to bring in more young faculty with expertise in these areas.
Another goal is to build community, facilitate social interactions and provide more opportunities to exchange ideas among biotechnology research labs—crossing disciplines but also campuses. That was all put aside during Covid times, but it is very important. Without community, BTI is nothing but a collection of people. We’re going to have seminars followed by networking happy hours in both St. Paul and Minneapolis, not just by bringing in external speakers but having BTI labs give short talk to present their current research and where there research is headed. We are also reviving the graduate student and postdoc-led workshop series.
How will the Biotechnology Resource Center expansion benefit the University and for the state?
The new Microbial Cell Manufacturing Facility will have six times the pace of the current BRC, which will bring much needed capacity in microbial biomanufacturing to the University. Currently, the BRC is operating at capacity and even must turn down biomanufacturing projects and clients because of this. There is a huge demand for the types of the service the BRC offers in the preclinical space. The expanded BRC will therefore be able to serve much better the needs of UM researchers, industry, and academic partners. The “old BRC” offers opportunities for the development of new workforce training programs in biomanufacturing.
What are the big emerging societal needs that biotechnology can address, and how is BTI positioning to address them?
It is clear that we need to find drastically new ways of mitigating climate change, by developing new bio-based technologies for sustainable manufacturing, energy conversion, combating greenhouse gas emission or converting and sequestering carbon dioxide and for addressing environmental concerns. I see BTI as a catalyst and facilitator of research in these areas by bringing people together to tackle ambitious problems as teams with diverse cross-disciplinary skill sets.