Bio-machines and Nanospheres

Bio-machines and Nanospheres

Mapping Selenium Respiration Pathways in Gram-negative Bacteria

Imagine for a moment, the conditions necessary to sustain life. What comes to mind? Water? Oxygen? Sunlight? Think again. Many of the world’s smallest organisms have evolved and adapted to live under extreme conditions where these basic building blocks are scarce or absent altogether.

Visiting MnDRIVE scholar Clive Butler is determined to crack the code in one such extremophile, the bacterium Thauera selenatis. Like many microorganisms, T. selenatis exhibits remarkable respiratory flexibility. In the absence of oxygen, it’s able to substitute compounds based upon nitrogen or sulfur in a process called anaerobic respiration, which is familiar to most of us as the “rotten egg” smell from the anaerobic respiration of sulfur.

More importantly, T. selenatis is part of a small class of organisms that can breathe selenium oxides; a nonmetal trace element required for some protein synthesis. This trait alone makes the organism worthy of attention, but the bug is also a remarkably efficient bio-machine able to secrete tiny selenium nanoparticles with unexpected physical and optical characteristics. Currently very expensive and highly toxic to produce, these nanoparticles are sought after in scientific research and advanced manufacturing.

To better understand how T. selenatis is able to accomplish this remarkable feat, Butler is spending his research sabbatical working in the lab of UMN microbiologist, Jeff Gralnick (Microbiology/BTI). Gralnick and Butler have known each other for several years and follow each other’s research. Butler, an associate professor at the University of Exeter, is a biochemist looking at protein structure and function who is also interested in exploring molecular genetics and the ability to clone and manipulate an organism’s genetic code. When the opportunity for a study leave arose, Butler approached Gralnick about a possible collaboration. Leveraging Gralnick’s expertise in molecular genetics, the pair set out to create knockout mutants in a related organism called Aeromonas hydorphila, also reported to respire selenate and iron, which could help shed light on the inner working of T. selenatis and some of the iron-reducers studied in the Gralnick lab.

Unlike the mutants in science-fiction movies, these genetic mutants are bacterial strains engineered to express or suppress specific genes and traits. They help scientists isolate biochemical processes to better understand their sequence and function.

“Getting an idea of those mechanisms will give us a leg up on how this organism lives and how it survives,” says Butler. Later this month when he returns to his lab in Exeter, Butler will use the techniques learned in the Gralnick lab to investigate the missing links in the selenium respiration cycle for T. selenatis.

Butler traces his interest in science to a childhood accident that damaged his right arm. The original injury, which occurred when Butler was seven, led to tissue damage from internal swelling and required extensive reconstructive surgery. Over the next ten years as Butler’s arm continued to grow, complications arose, and the process repeated itself.

“From seven to sixteen,” Butler explains, “I spent my life in and out of hospitals around doctors and medical professionals. I became quite interested in science, medicine, and biological processes in general. Why don’t these muscles work anymore? Why doesn’t the arm do what it should do? In school, science was one of the few things I was pretty good at. Sports or the trades were out of the question. In today’s society, we’re more accepting of limitations, but this happened in the seventies, so it tended shut some doors and open others.”

By the time he entered university, his interest had shifted to biochemistry.

“One of things the arm brought home is just how dependent we are on oxygen. At a human level, if we don’t have oxygen we suffocate and die, but oxygen is also necessary at a cellular level. One of the great things about bacteria is they are really flexible with how they use energy. They often find themselves in a situation where they are deprived of oxygen and have to find a way to conserve energy and live and grow. They have to adapt. That adaptability is intriguing from a personal perspective because the injury forced me to adapt and move on with my life.”

Right handed before the accident, Butler learned to use his left hand for most daily tasks. Today he considers himself a lefty. If someone throws a ball his way, he instinctively uses his now dominant left hand. With the encouragement of his father, an amateur painter, Butler began to draw as a way of building eye-hand coordination. He became a rather accomplished draftsman and continues to draw and paint in his spare time, though science remains his primary focus.

His interest in selenate respiration began about 15 years ago after the first strain of T. selenatis was isolated from selenium-contaminated drainage waters in California’s San Joaquin Valley, by the late Prof. Joan Macy. Like many organisms that thrive in extreme environments, T. selenatis evolved to take advantage of available resources. In this case, a soluble and potentially toxic selenium oxide known as selenate.

Because selenium is an essential micronutrient necessary for some enzyme and amino acid production, many micro-organisms have evolved selenium uptake mechanisms. However, few have evolved as T. selenatis, which uses selenium in the respiratory chain that converts organic nutrients into cellular energy.

An important micronutrient, selenium is a basic building block for the 21st amino acid, selenocysteine, which is found in nearly every life form on earth. It’s widely used in feed supplements and has important industrial applications in glass production and the manufacture of circuit boards, batteries, and solar cells. Some studies suggest it may even have anti-microbial effects, but despite its beneficial role, selenium is not entirely trouble-free. Selenium oxides are frequently a byproduct of mining and fossil fuel production. They are highly soluble and toxic in large quantities and represent a potential environmental risk. Soon after its discovery, scientist began looking at T. selenatis as a potential tool for bioremediation of selenate contamination in the water district surrounding the San Joaquin Valley.

Understanding the selenate reduction pathways could allow scientists to develop highly efficient microbial filters for use in bioremediation and the recovery of selenium from mining or industrial processes. Equally intriguing, however, is the potential to develop microbial factories or bio-machines capable of producing selenium nanoparticles perhaps combined with other materials like cadmium.

“In theory, using synthetic biology you could insert both transport and production proteins into an organism like E. coli to create a biological machine that would produce a range of nanomaterials,” explains Butler. “The advantage would be getting the organism to select the materials, process them, and spit them out, which means you don’t have to go through the downstream processes of breaking up the cell to extract material.”

Early on, Butler hypothesized that selenium was processed at the very heart of the cell in the cytoplasm, where it would be available both for cell respiration and protein synthesis. Over several years, Butler and his group at the University of Exeter observed and documented the two-step process whereby T. selenatis absorbs selenate (Se042-) from the surrounding environment and converts it to elemental selenium. The first phase, selenate reduction, takes place in the cell’s outer compartment, the periplasm, and was fairly common among selenate reducing bacteria. The second phase, in which the byproduct selenite (Se032-) was further reduced to elemental selenium, took place in the cytoplasm at the very heart of the cell.

“Most respiratory processes involving oxygen or nitrogen produce aqueous or gaseous end products, making elimination from the cell possible through diffusion,” Butler explains. “Organisms that produce non-soluble respiratory products must evolve a mechanism to avoid entombment of the waste product within the cell.”

Once inside the cell, Butler points out, it is typically very difficult to excrete elemental solids like selenium. The alternative is the slow accumulation of selenium within the cell wall, which would eventually overwhelm the cell and destroy the bacteria. This clearly wasn’t the case in T. selenatis.

When Butler’s group began tracking the accumulation of selenium within T. selenatis, they found that selenium deposits formed inside the cell in the early-growth phase, but shifted to the outside during later stages of cell growth. Under an electron microscope, they also found that the selenium had formed into distinct nanospheres that were not quite round and strikingly uniform in size of 130 nanometers (± 28nm). The particles were quite different from structures observed when mineral accumulation takes place outside of the cell where there is little or no regulation of size or shape.

The evidence suggested that selenium particles were formed inside the cell membrane. This behavior left Butler with an even more puzzling question. How was the cell able to consistently regulate particle size within a very narrow band observed in the lab? The answer, Butler discovered, lay in a novel protein called SefA.

SefA is part of a family of proteins, which Butler refers to as minerallins, that play a role in mineral formation. SefA has been found in other selenium respiring organisms. It has also been isolated from dental plaque and likely plays a role in both the formation and transport of mineral structures, though as Butler admits, this idea is still theoretical.

In T. selenatis, SefA appeared to play an important role in regulating both nanosphere assembly and particle size. A series of physiological experiments and biochemical assays linked SefA to the selenite reduction stage. SefA production rose when selenite levels where high and SefA even accompanied the export of selenium particles from the cell.

Butler’s confirmed his hunch about SefA through in vitro experiments. His team found that the were able to control selenium particle size by regulating the amount of SefA protein in solution. Evidence for SefA’s role in particle formation was further strengthened by synthetic biology experiments in which the research team inserted SefA producing genes into a strain of E. coli. The new strain behaved as expected, and produced nanoparticles similar to those found in T. selenatis. 

Exactly how SefA regulates particle size is still a mystery. Butler suspects that SefA may be coating the particles, and perhaps forming a protein cage with an optimal size of 130 nm. 

“We have done some experiments placing tags on the SefA protein to interfere with its function. If you put a tag on one end, you get much smaller particles. If you put a tag on both ends, there is no regulation at all. The protein itself is definitely controlling size, which is probably due to the way it assembles the particles. Unless we get down to the atomic structures, we won’t know for sure.”

Using atomic force microscopy, Butler’s team hopes to probe the surface and test its rigidity. If the particles are solid, it presents a very different set of challenges than if the particles are made of a sponge-like materials that could be compressed as they cross the cell wall.

Butler also hopes to use high-resolution optical microscopy to study single cells, and observe as they respire selenate to determine how particles leave the cell. They may be secreted randomly across the membrane, but he has also observed pearl like particles streaming off the cell wall, which suggests a single point of secretion. If this proves true, it raises new questions. “What controls the flow?” Butler asks. “How does it that happen in a microbe with no digestive track or organ-level development?” 

Back in Exeter, Butler will continue to create his knockout mutants, producing bacterial strains that selectively eliminate proteins he suspects are involved in selenium transport. With luck, he will identify the elusive proteins responsible for moving selenium nanoparticles across the cytoplasm and outer membrane without damaging the cell. Someday, researchers may use this knowledge to create the perfect bio-machine. Until then, Butler’s work continues to evolve as he studies the biochemical processes of one very small and highly adaptable creature.

Managing Microbes in Brazil’s Agricultural South

BTI Director travels to Brazil to mentor students researching bioremediation of agriculture chemicals.

BY ALLISON KRONBERG

BTI Director Michael Sadowsky understands both French and Spanish, but hardly a word of Portuguese. Yet this summer he launched a two-year collaborative research initiative in Ponta Grossa, Brazil, as part of the Brazilian Government’s Science Without Borders Project.

Sponsored by Brazilian National Council for Scientific and Technological Development (CNPQ), Brazil’s equivalent of the National Science Foundation, the program allows Sadowsky to share his expertise in microbiology and bioremediation with colleagues and students in this Southern Brazilian industrial and agricultural center.

In Brazil, Sadowsky works alongside his long-time colleague Marcos Pileggi, a professor of biology and evolution at the Universidade Estadual de Ponta Grossa. Along with Pileggi’s students, the pair will conduct research on bacterial pesticide degradation that could help protect Brazil’s environment and save money for local farmers and pesticide manufacturers.

According to Sadowsky, Brazilian farmers receive concentrated chemicals from pesticide and herbicide companies, often in five-gallon buckets. Farmers then transfer the liquid to large tanks and add water to dilute the chemicals before spraying.

But not all of the pesticide is used and the toxic residue can’t be thrown away or dumped in the environment. Some manufactures provide a pick-up service for the remaining liquid, and store it in large tanks where it degrades over time. But if the biodegradation is incomplete, they burn it — and burning liquid is very expensive.

With Sadowsky’s help, Pileggi and his lab of 10 undergraduate and graduate students hope to identify bacteria that will naturally and efficiently degrade the concentrated liquid waste. During Sadowsky’s first 10-day trip, the group created a research plan and took initial steps toward isolating bacteria capable of degrading leftover pesticides and herbicides.

“Bacteria are the most versatile tool we have for degrading compounds in the environment,” Sadowsky said. “We are trying to find more environmentally friendly ways of doing things, and very often that involves old-fashioned microbiology.”

The team put the chemicals in a tank and added different types of bacteria to see which microbes would survive and grow using the pesticides and herbicides as a food source. The technique (called enrichment) was developed in the late 1800s and is still considered the most effective way to find bacteria that can breakdown chemical compounds.

Sadowsky, who also serves as co-Director of MnDRIVE’s microbial bioremediation initiative, began international scientific work in the 80s, and he has visited Brazil a few times before, but this is his first fully funded research trip abroad.

“Brazil is a good place to perform the research,” Sadowsky said, “because some of the herbicides and pesticides the lab is now studying have been banned in the United States.”

The seed for the collaboration was planted almost five years ago when Pileggi came to Minnesota to research pesticide degradation with Sadowsky’s lab. Now, upon Pillegi’s request, the two professors have swapped roles.

“This is a great experience for me,” Sadowsky said. “Hopefully we’ll develop some new technologies out of this research. But that’s going to take some time, and we’ll have to see if it really comes to fruition.”

Sadowsky’s trip has a strong educational focus as well, and supports Science Without Border’s goal of increasing the number of Brazilian Ph.D.’s  through international scientific research and collaboration.

“Mike is helping me organize my Environmental Microbiology Laboratory with more focus and efficiency,” Pileggi said. “He pushed us a lot, and we enjoyed it.”

Students from the Universidade Estadual de Ponta Grossa, can continue their training at institutions like the Federal University system, which grants Ph.D.’s.

Sadowsky will travel to Brazil six times over the next two years. Once the project is complete, he hopes to invite some of the Brazilian students to the United States where they can receive advanced training in new and emerging technologies.

Primordial Peptides

UMN researcher Burckhard Seelig wins the prestigious Simons Investigator Award and joins the Collaboration on the Origins of Life

University of Minnesota researcher Burckhard Seelig (BMBB, BTI) has a longstanding interest in how the earliest forms of life may have come into existence. This year, his efforts were rewarded with a 5-year, one million dollar grant from the New York-based Simons Collaboration on the Origins of Life. One of two scientists invited to join the Collaboration in 2015, Seelig is part of a 21-member multi-disciplinary team looking at potential scenarios for how life could have started from non-biological matter, and the planetary conditions that could have supported the origin of life.

The goal of this Simons Collaboration is to fund an interactive community of investigators using systems reaching across disciplines, technologies, and institutions to advance our understanding of the processes which led to the emergence of life.

“This collaboration is a unique opportunity,” said Seelig. “There are a number of physicists, chemists, and biochemists, like me, but there are also planetary scientists and geobiologists. So, based on our knowledge of early planetary conditions, you can ask what kind of chemistry could have existed and talk to the chemist to find out what kind of reactions could have occurred. Then you can talk to the biochemists to see what you could make from those chemicals.”

In a field where much of the work is dominated by hypotheses, Seelig works experimentally to investigate the missing link between early non-biological amino acids, building blocks for complex proteins, and the modern alphabet of 20 amino acids that make up life’s universal genetic code.

“Today’s genetic code uses 20 amino acids. It did not start with all 20 right away, that’s for sure, but which ones exactly and in what order? This subject has been mostly theoretical. In our lab, we can actually make proteins using likely earlier versions of the genetic code and we can test them,” explained Seelig.

Dialing back the clock, his lab will test ever smaller alphabets of amino acids for their ability to produce functional proteins necessary for the survival of protocells at the origin of life. “If you have an alphabet of only early amino acids, can you make proteins as functional as those we have today? Probably not. But you can see what functions they have and ask what minimum alphabet is necessary to make a functional folded protein. So far, we don’t know. That’s what we’re trying to investigate with this project,” said Seelig. “The further you go back in time,” says Seelig, “the noisier the picture gets because we have less and less reliable information. We will never be able to really tell how life began, but what we hope to do is come up with realistic scenarios about how parts of this process could have happened. In our case, it’s about proteins.”

The award will fund two postdoctoral researchers and help support basic research, providing a welcome balance for the lab’s ongoing applied research on the synthesis of designer enzymes for medical applications and use in the pharmaceutical industry.

Dr. Seelig is a faculty member in the College of Biological Sciences Department of Biochemistry, Molecular Biology and Biophysics and a member of the University of Minnesota BioTechnology Institue.

BTI’s Wei-Shou HU spearheads new consortium to speed drug development from Chinese Hamster Ovary cell lines

Distinguished McNight Professor Wei-Shou Hu (BTI/CEMS) is leading a new Consortium for Chinese Hamster Ovary Cell Systems Biotechnology formed under the auspices of the Society of Biological Engineering. This new consortium of seven pharmaceutical companies from USA, Europe and Japan is built upon work of the proceedings of the Consortium of Chinese Hamster Ovary Cell Genomics from 2006-2010, which completed sequencing of the Chinese hamster genome and developed platforms for genome scale analysis.

The Chinese Hamster Ovary (CHO) cell line is used in the production of over 70% of all biologics, valued at over $40 billion per annum.  The new effort aims to harness the genomic information and further advance our understanding of cell line production, productivity and product quality and to facilitate member companies entering the post-genomics era of biologics manufacturing.

Yeast study yields insights into origin of multicellular life

Yeast study yields insights into origin of multicellular life

Researchers in the BioTechnology Institute (BTI), lead by faculty member Michael Travisano, have demonstrated how multicellular organisms can evolve from single-celled individuals. This important transition has long been a mystery to scientists. The researchers showed that the ability to cluster and the ability to live together cooperatively in groups were key steps. This research not only yields new insights on multicellularity, but also may improve understanding about the processes of aging and the development of cancer.

The Travisano research group has been looking at yeast clusters in the model system Saccharomyces cerevisiae, more commonly known as baker’s yeast. Through careful harvesting of yeast cells that settle at the bottom of a test tube after mild centrifuge, they have been able to select for multicellular strains that form snowflake-shaped clusters.

Multicellular yeast display primitive division of labor, one of the requirements of multicellularity. To reproduce itself, a small portion of the snowflake breaks off at “breakpoints” created by apoptotic cells (highlighted above in green) and then grows. In this regard, there is a division of labor – some cells serve as the progenitors of another cluster and some cells die to allow other cells to separate. (photo courtesy Michael Travisano and www.micropop.org)

In a study recently published in the Proceedings of the National Academy of Sciences (PNAS), the researchers demonstrated that clustering of the yeast cells was adaptive and that beyond simply clustering, cells within these colonies, though physiologically similar, evolved different functions and traits. In particular, improvements in colony reproduction were achieved by a process called apoptosis.

“Arguably one of the most important traits in existing multicellular organisms is apoptosis,” explained postdoctoral research associate Will Ratcliff, first author on the paper.

Apoptosis is the genetically programmed death of a cell that is critical for multicellular development and maintenance. Unlike traumatic cell death caused by injury, apoptosis occurs as a response to biochemical changes in the cell. Through microscopic observation of the multicellular snowflake-shaped yeast clusters, the team found that dead and dying cells formed weak links that provided break points for separation of a daughter cluster. This genetically programmed death thus promoted multicellular reproduction.

“It’s a structural interaction,” observed Travisano, “caused by cell death that aids reproduction.”

Though reproduction of individual yeast cells can be either sexual (through the production of spores) or asexual (by means of cell division), the multicellular reproduction of the newly evolved yeast colonies was asexual. The structural breaking off of new smaller colonies, though not characteristic of multicellular animals, is a strategy found in plants and was facilitated by increased apoptosis. This asexual reproduction of multicellular yeast also presents researchers with some insights into the aging process (progressive cell damage and death) and into the unregulated development of cancer cells.

“It’s a model of a cancer tumor,” concluded Ratcliff. “There are a lot of similarities to how we think cancer might occur and evolve.”

Read more about the multicellular yeast project on www.micropop.org.
Read the University of Minnesota news feature.
Read the Minneapolis Star Tribune feature.

-Tim Montgomery

Predicting how Microbes Will Work Together

Researchers working with BTI faculty members Yiannis Kaznessis and Claudia Schmidt-Dannert have devised a way to accurately predict growth and behavior of synthetic ecological systems – engineered relationships between different organisms that don’t occur in nature. The predictions are based on mathematical models of growth and chemical signaling pathways between bacteria and yeast in a simulated synthetic ecological system.

Synthetic ecology is a relatively new approach to biological processing that relies on a cooperative system of multiple microbial populations living and working together in productive interactions. These biological systems may be designed and constructed from modified organisms, and can establish new relationships between different organisms not normally found living together. The ability to engineer functionality and cooperation between multiple organisms of different species opens the door to producing a broad range of specialty chemicals, pharmaceuticals and biofuels.

“One challenge of engineering these systems is getting the microbial members – especially from different species like yeast and bacteria – to “talk” to each other and coordinate their metabolism,” explained David Babson, a postdoctoral research associate working on the project.

In simulating the synthetic bacteria-yeast ecosystem, researchers examined the role of a couple signaling molecules commonly used in bacterial communication and engineered a strain of yeast that could produce one and respond to the presence of the other generated by an engineered bacteria. They took into account volume and the growth rate differences between the bacteria and yeast and the effect of different transcription rates and random variables in predicting probable behavior.

The developed model allows for the optimization of experimental behavior not only of a yeast-bacteria community, but also of a number of other synthetic microbial communities.

“The ability to predict the interactions and population dynamics of theoretical ecological systems can inform the design of these systems,” concluded Babson. “This is what these models do for us, and that is why this research is so important.”

-Tim Montgomery