Ludmilla Aristilde

Associate Professor, Civil and Environmental Engineering and (by courtesy) Chemical and Biological Engineering
Faculty Fellow, Center for Synthetic Biology
University of Minnesota

Multi-Omics Investigation of Carbon Flux Networks in Environmental Bacteria of Biotechnological Relevance


Biological conversion of organic wastes into valuable products represents an important component of a sustainable energy portfolio towards decreasing our reliance on petroleum-based chemical production. Critical to this effort is a fundamental understanding of the metabolic networks that control carbon utilization by environmental bacteria, which provide an array of potential biological platforms to develop new chassis for biotechnological targets.

Dr Aristilde and her team has developed 13C-metabolomics approaches coupled with other omics techniques to unravel the metabolic flux networks in bacterial species isolated from soils, plant roots, and wastewater streams. We combine high-resolution fingerprinting of metabolites and metabolic reactions with genome-based predictions, proteomics analyses, and fluxomics modeling.

This walk will present multi-omics investigations to obtain new insights on the metabolic mechanisms underlying carbon flux routing in Pseudomonas putida, Priestia megaterium (formerly known as Bacillus megaterium), and Comamonas testosteroni. Guiding principles to identify target pathway candidates for metabolic engineering will also be highlighted.